Effects of Recycled Materials in Asphalt Field and Lab Operations

By
Scott Quire, P.E.
Bluegrass Testing Laboratory
Bluegrass Testing Laboratory Facility in Louisville, KY
Hot Mix Asphalt (HMA) utilizing recycle materials is the predominant form of mix production in the Industry.
According to Asphalt Pavement.ORG

• “According to the most recent survey, more than 79 million tons of recycled materials — primarily reclaimed asphalt pavement material (RAP) and recycled asphalt roofing shingles (RAS) — were used in new asphalt pavement mixtures during the 2016 construction season.”
Recycle Materials - Recycled Asphalt Shingles
OTHER RECYCLE MATERIALS

• Ground tire rubber (multiple processes used)
• Processed Ground Glass
• Crushed Tiles (and similar composite materials)
• Plastics (in binders)
Effects of Recycled Materials in Asphalt Field and Lab Operations

- **Considerations in Using Recycle Materials**
 - Specifications limits
 - Type of Recycle Material
 - RAP
 - RAS
 - Availability of recycle material
 - Mixture design issues
 - Plant capabilities/issues
 - Laydown operations
Utilization of Recycle Materials

• Considerations in Using Recycle Materials
 • Specifications limits
 • EXAMPLE

EX: SP125C w/PG 64-22
-<30 % Effective binder replacement, No additional binder testing
->30 % Effective binder replacement, Will need AASHTO M323, APPENDIX X1,X2 blend data
Utilization of Recycle Materials

- Considerations in Using Recycle Materials
 - Specifications limits
 - EXAMPLE

EX: BP-2 w/PG 64-22

- BP2 w/40 % RAP, RAP %ac=5.0,
% Recycle Binder (in mix)=2.0%
%Effective Binder=4.9 %,
% Effective Binder Replacement=40.8 %
TESTING NEEDED: Binder Blend Chart
Ammann Plant, Columbus, OH

2019 AVERAGE RAP%=55%

60% RAP in 9.5mm Surface

70% RAP in 19.0mm Base
Effects of Recycled Materials in Asphalt Field and Lab Operations

• Considerations in Using Recycle Materials
 • Type of Recycle Material
 • RAP
 • RAS
Effects of Recycled Materials in Asphalt Field and Lab Operations

Crushing/Screening of RAP is an integral part of making a consistent HMA product.
Effects of Recycled Materials in Asphalt Field and Lab Operations

• **Considerations in Using Recycle Materials**
 • RAP:
 • If using lower % RAP (<15 %) may get by with a one grading (ex. 1/2” minus RAP)
 • If using higher % RAP, fractionated RAP will help in maintaining consistency
 • COARSE RAP, FINE RAP
Effects of Recycled Materials in Asphalt Field and Lab Operations

- Testing of recycle products needed to maintain consistent mixture properties:
Effects of Recycled Materials in Asphalt Field and Lab Operations

• Considerations in Using Recycle Materials
 • Recycled Asphalt Shingles
 • Processing the shingles required
Effects of Recycled Materials in Asphalt Field and Lab Operations

• **Considerations in Using Recycle Materials**
 • Recycled Asphalt Shingles
 • If feeding RAS as sole recycle material consider preblending with a sand
 • Erratic feed for low feed rate (2.5-4.0% cold feed)
 • 50/50 blend with sand (mfg. sand/nat. sand) would increase ≥5% for better feed
 • If feeding both RAP and RAS can preblend RAP/RAS for more consistent feed
Effects of Recycled Materials in Asphalt Field and Lab Operations

• Considerations in Using Recycle Materials
 • Availability of recycle material
 • Rural areas may have greater challenge for excess of RAP:
 • may choose lower % feed rate to spread RAP over more mix tons
 • May choose to blend RAP and RAS to maximize recycle asphalt content
 • Less factors to deal with
Effects of Recycled Materials in Asphalt Field and Lab Operations

• Considerations in Using Recycle Materials
 • Availability of recycle material
 • Urban areas may have large surplus of recycle (RAP)
 • May choose high % RAP
 • May have to use softer binder grade or rejuvenator for blending to address:
 • Meeting specification requirements
 • Minimizing mixture cracking susceptibility
 • Workability for laydown crews
Effects of Recycled Materials in Asphalt Field and Lab Operations

- Mix Design Issues:
 - RECYCLE ASPHALT CONTENTS UTILIZED
 - Strong thought that RAP may only offer up 80-85% of the TOTAL RAP % Binder and RAS only 50%
 - If taking 100% credit for the TOTAL Binder content Mix may be actually be realizing a lower % asphalt content that is truly effective-MIX DRY
 - If HMA w/Recycle has the asphalt extracted, recovered and graded is that truly correct?
 - Most State agencies require extracted, recovered binder grading for confidence check on blended binder properties
 - Performance Testing (CRACK and RUT testing better solution)
Effects of Recycled Materials in Asphalt Field and Lab Operations

• If recycle % requires a modifier to address binder stiffness:
 • Can use a softer binder grade (ex. PG 58-28 instead of the Contract bid item PG 64-22
 • Can use a rejuvenator with PG 64-22 to address moderate/moderately high RAP %’s (30-40%)
 • If RAP % are very high (45 %+), a softer binder grade and a rejuvenator may be needed
 • RAS: Have seen 176 to 185 C High temperature grades and low temperature grading to +25 C. What do you blend?
ADDITIVE (REJUVENATOR) SUPPLY SYSTEM

INDIVIDUAL TOTES (for smaller production targets)

BULK STORAGE TANKS (for larger production targets)
Ammann Plant, Columbus, OH

2019 AVERAGE RAP% = 55%

60% RAP in 9.5mm Surface

70% RAP in 19.0mm Base
EXAMPLE HIGH % RAP SURFACE AND PERFORMANCE TESTING

<table>
<thead>
<tr>
<th>DATE:</th>
<th>5/28/2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT NAME:</td>
<td>60 % RAP w/REJUVENATOR and PG 58-28 vs 25 % RAP w/PG 64-22</td>
</tr>
<tr>
<td>MIX TYPE:</td>
<td>9.5mm Surface</td>
</tr>
<tr>
<td>Mix A (50 % Binder Replacement)</td>
<td>Mix B (21 % Binder Replacement)</td>
</tr>
<tr>
<td>MIXTURE COMBINATION</td>
<td>60 % RAP w/0.10 %</td>
</tr>
<tr>
<td>TEST PROPERTY</td>
<td>(wt. of mix) REJUVENATOR and PG 58-28</td>
</tr>
<tr>
<td>IDEAL CT-INDEX</td>
<td>126.3</td>
</tr>
<tr>
<td>Disk-Shaped Compact Tension (DCT), Fracture Energy (J/m²)</td>
<td>389.7 (@ -12 C)</td>
</tr>
<tr>
<td>Hamburg Loaded Wheel Rut Depth (mm):</td>
<td>3.4 mm @ 10,000 cycles</td>
</tr>
</tbody>
</table>
Effects of Recycled Materials in Asphalt Field and Lab Operations

- Plant capabilities/issues
 - To keep sufficient RAP for higher daily mix production:
 - crushing/screening operation critical to maintain supply
 - Two RAP fractions
 - Coarse RAP (1/2" x 3/8")
 - FINE RAP (3/8" minus)
 - Typical 60-65% FRAP
 - 35-40% Coarse RAP
QC CONCERN: ASPHALT CONTENT CONCERN DUE TO HIGH RAP USE

Powerscreen: RAP % AC Higher

RAP Crushing/Screening: % AC Lower
Effects of Recycled Materials in Asphalt Field and Lab Operations

• PLANT PRODUCTION CONCERNS:
 • PLANT LIMITATIONS ON RAP %
 • RAP FEED SYSTEM
 • HEATING/DRYING RAP (HEAT TRANSFER FROM VIRGIN AGGREGATES)
 • RAP w/HIGH % MOISTURE and MAINTAINING BAGHOUSE TEMPERATURES
 • HIGH RAP % AND MAINTAINING ADEQUATE VEIL OF VIRGIN AGGREGATE IN DRUM
PLANT STORAGE TIME AND MIX TEST PROPERTIES

• DOES EXTENDED PLANT STORAGE HAVE AN EFFECT ON MIXTURE PROPERTIES?????
 • CRACK TESTING
 • IDEAL CT-INDEX
 • FLEXIBILITY INDEX
Hurstbourne Lane Laboratory Design Phase

- IDEAL CT Index = 95.3
- More absorptive dolomite coarse aggregate

<table>
<thead>
<tr>
<th>SUBLOT#</th>
<th>CT-INDEX</th>
<th>DATE</th>
<th>Time to Placement</th>
<th>NOTES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.5</td>
<td>125.52</td>
<td>10/29/18</td>
<td>50 min.</td>
<td></td>
</tr>
<tr>
<td>1.2.0</td>
<td>117.65</td>
<td>10/29/18</td>
<td>50 min.</td>
<td></td>
</tr>
<tr>
<td>1.2.5</td>
<td>76.03</td>
<td>10/30/18</td>
<td>5 hrs.</td>
<td></td>
</tr>
<tr>
<td>1.3.0</td>
<td>102.35</td>
<td>11/2/18</td>
<td>50 min.</td>
<td></td>
</tr>
<tr>
<td>1.3.5</td>
<td>103.90</td>
<td>11/2/18</td>
<td>50 min.</td>
<td></td>
</tr>
<tr>
<td>1.4.0</td>
<td>78.20</td>
<td>11/2/18</td>
<td>50 min.</td>
<td>%AC low 0.4%</td>
</tr>
<tr>
<td>1.4.5</td>
<td>96.90</td>
<td>11/6/18</td>
<td>1.5 hrs.</td>
<td></td>
</tr>
<tr>
<td>2.1.0</td>
<td>113.70</td>
<td>11/6/18</td>
<td>1.5 hrs.</td>
<td></td>
</tr>
<tr>
<td>2.1.5</td>
<td>92.50</td>
<td>11/6/18</td>
<td>3.0 hrs.</td>
<td></td>
</tr>
<tr>
<td>2.2.0</td>
<td>102.90</td>
<td>11/6/18</td>
<td>3.0 hrs.</td>
<td></td>
</tr>
<tr>
<td>2.2.5</td>
<td>103.90</td>
<td>11/7/18</td>
<td>3.0 hrs.</td>
<td></td>
</tr>
<tr>
<td>2.3.0</td>
<td>109.80</td>
<td>11/7/18</td>
<td>3.0 hrs.</td>
<td></td>
</tr>
<tr>
<td>2.3.5</td>
<td>112.40</td>
<td>11/7/18</td>
<td>1.5 hrs.</td>
<td>%AC low 0.4%</td>
</tr>
<tr>
<td>2.4.0</td>
<td>80.90</td>
<td>11/8/18</td>
<td>1.5 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

OBSERVATIONS:

1. AVERAGE CT INDEX FOR ALL SUBLOTS = 101.19
2. LOW CT-INDEX VALUE = 76.03
3. HIGH CT-INDEX VALUE = 125.52
4. FACTORS AFFECTING CT-INDEX VALUES:
 - STORAGE TIME
 - % AGGREGATE ABSORPTION CHARACTERISTICS
2.0 Flexibility Index (FI) Testing

The FI testing will be completed in accordance with Illinois Test Procedure 405 dated 01/01/16 available at http://www.modot.org/business/contractor_resources/forms.htm

<table>
<thead>
<tr>
<th>FLEXIBILITY INDEX</th>
<th>Ideal CT</th>
<th>Percent of Contract Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMAS <190</td>
<td>NMAS <190</td>
<td></td>
</tr>
<tr>
<td>< 2.0</td>
<td>< 32</td>
<td>98%</td>
</tr>
<tr>
<td>2.0 – 3.9</td>
<td>32 – 60</td>
<td>100%</td>
</tr>
<tr>
<td>4.0 – 7.9</td>
<td>60 - 97</td>
<td>102%</td>
</tr>
<tr>
<td>>8.0</td>
<td>> 97</td>
<td>103%</td>
</tr>
</tbody>
</table>
Effects of Recycled Materials in Asphalt Field and Lab Operations

• LAYDOWN CONCERNS (ISSUES):
 • If lower % Recycle, placement of mix is less affected
 • If high % recycle, WITHOUT ADDRESSING STIFFNESS OF MIX, the asphalt mixture will be more difficult to place/compact
 • Softer binder grade or 64-22 with rejuvenator to help
CONCLUSIONS

• Asphalt mixes utilizing recycle can be designed to accommodate even the very high RAP %’s
• Fractionating the RAP into multiple gradings gives much better control of final mixture volumetrics
• If using high recycle content the need to address hardness of the recycle binder by either softer binder grade and/or rejuvenator is there