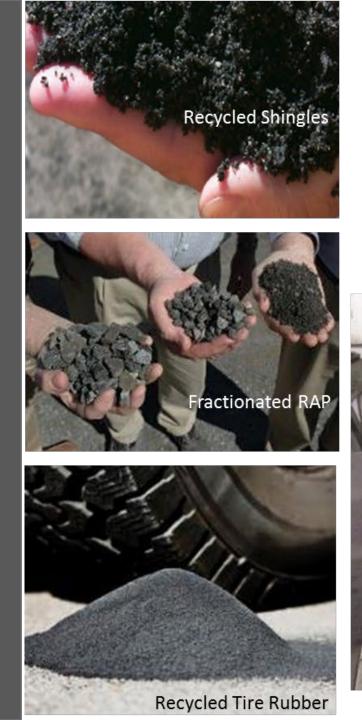


BMD Overview for Beginners

MAPA Spring Training - February 7th, 2024 Adam J. Taylor, P.E. National Center for Asphalt Technology (NCAT)

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

Motivations for Implementing BMD


- Reasons vary from Agency to Agency
- Dissatisfaction with performance of current mix designs
- Limitations of current volumetricbased system

Why Change?

- The key properties in Superpave mix design are air voids and volume of effective binder (V_{be})
- Volumetric properties do not tell us anything about the quality of the binder, or about the interactions of different binder components and additives
- V_{be} is dependent on the aggregate bulk specific gravity (G_{sb}), which is not a reliable property
 - G_{sb} are subject to change over time, but not often verified
 - G_{sb} has a low level of precision
 - G_{sb} of RAP aggregate is questionable
- Volumetrics tell us about the <u>quantity</u> of binder, but not about the <u>quality</u> of binder

With the current volumetric mix

design system...

Performance Testing (20+ years ago)

- Performance tests were supposed to be included in Superpave Level II & III
 - Superpave Shear Tester (SST)
 - Superpave IDT
- Tests were too complicated and cost too much to implement for routine use

Asphalt Technology NCAT

National Center for

 In the early years of Superpave implementation, most attention was focused on rutting

Rutting

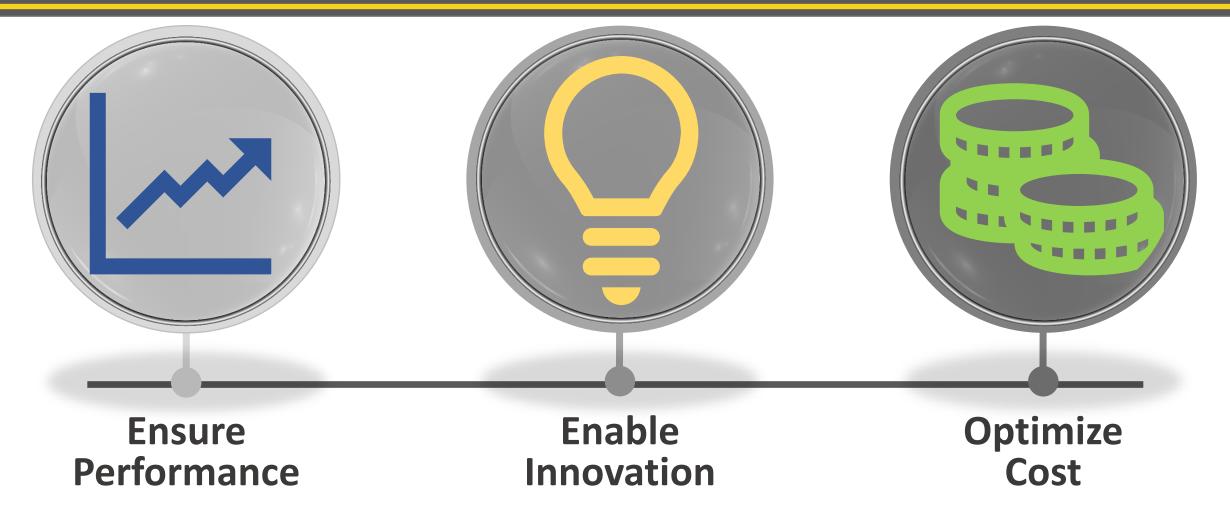
- Mix design strategies to mitigate rutting
 - Use of more angular aggregates
 - Binder grade adjustments
 - Polymer modification
 - Increased compactive efforts
 - Implementation of mixture rutting test (APA, HWTT)
- No longer a concern for many highway agencies

Cracking

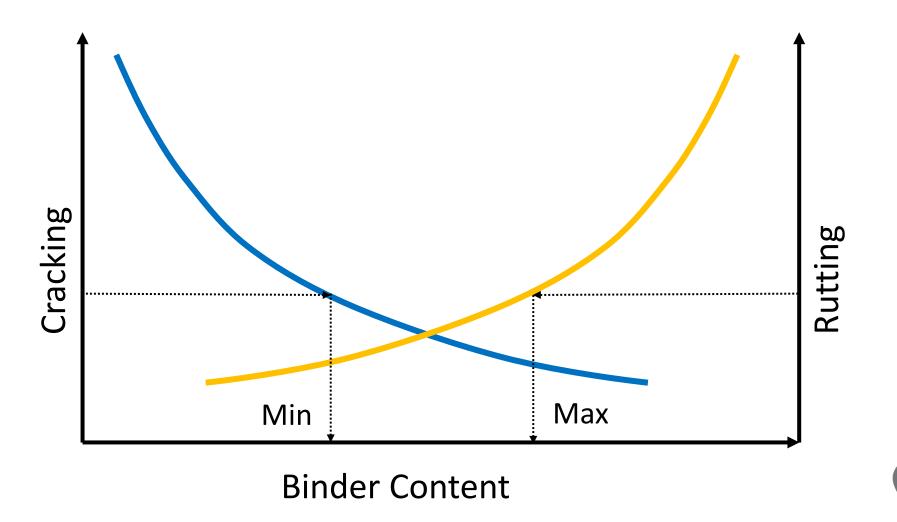
- A decade after Superpave implementation, we realized we needed to evaluate cracking susceptibility
- Fragmented research on cracking tests
- Numerous tweaks to volumetrics, but failed to address underlying flaws

"Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure"

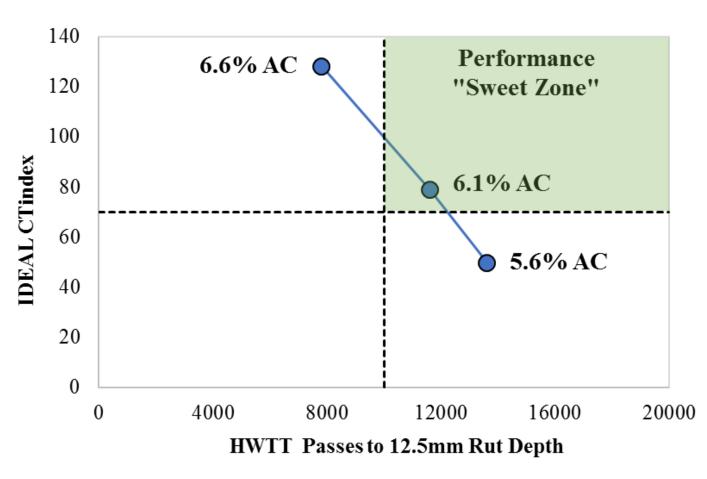
Balanced Mix Design BMD


AASHTO Standards on BMD

- AASHTO PP 105-20 (2022)
 - Standard Practice for Balanced Mix Design of Asphalt Mixtures
- AASHTO MP 46-20
 - Standard Specification for Balanced Mix Design



Anticipated Benefits of BMD


Acceptable Cracking and Rutting

National Center for Asphalt Technology NCAT

Acceptable Rutting and Cracking

- Example
 - Balance IDEAL-CT and Hamburg (HWTT)
 - Balancing AC Content in this example
 - BMD isn't just about AC content, however

What mix design variables affect performance?

<u>Binder</u>

- Binder content
- Binder grade
- Crude source
- Anti-strip
- Additives

Aggregate

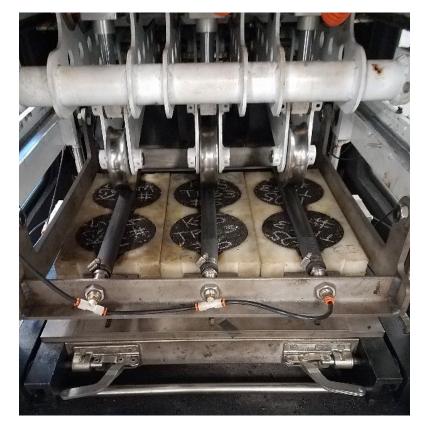
- Gradation
- Angularity
- Strength

Interaction between

variables

• Dust

Recycled


- RAP content
- RAS content
- Binder grade
- Plastics
- Rubber
- Fibers

Common BMD Rutting Tests – Wheel Tracking

Hamburg Wheel Tracking Test (HWTT) AASHTO T324-23

Asphalt Pavement Analyzer (APA) AASHTO T340-23

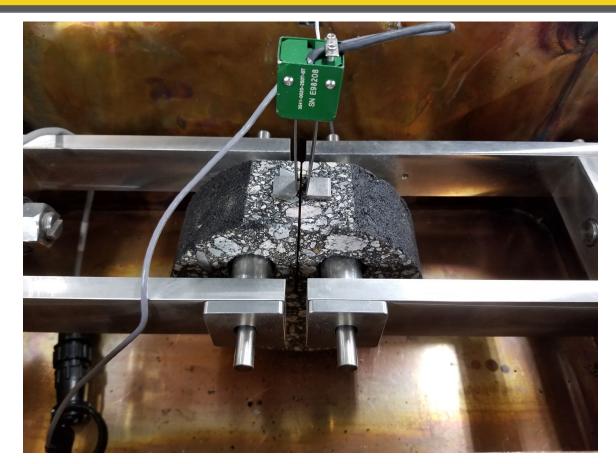
Common BMD Rutting Tests – Rapid Rutting

HT-IDT (Draft ASTM)

IDEAL-RT (ASTM D8360-22)

Common BMD Cracking Tests – Intermediate Temp

IDEAL-CT (ASTM D8225-19)


I-FIT (AASHTO T393-22)

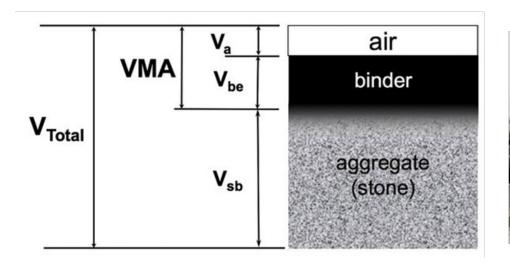
Overlay Test (OT) (Tex-248-F)

Common BMD Cracking Tests – Low Temperature

Disk-Shaped Compact Tension (ASTM D7313-20)

BMD Laboratory Tests

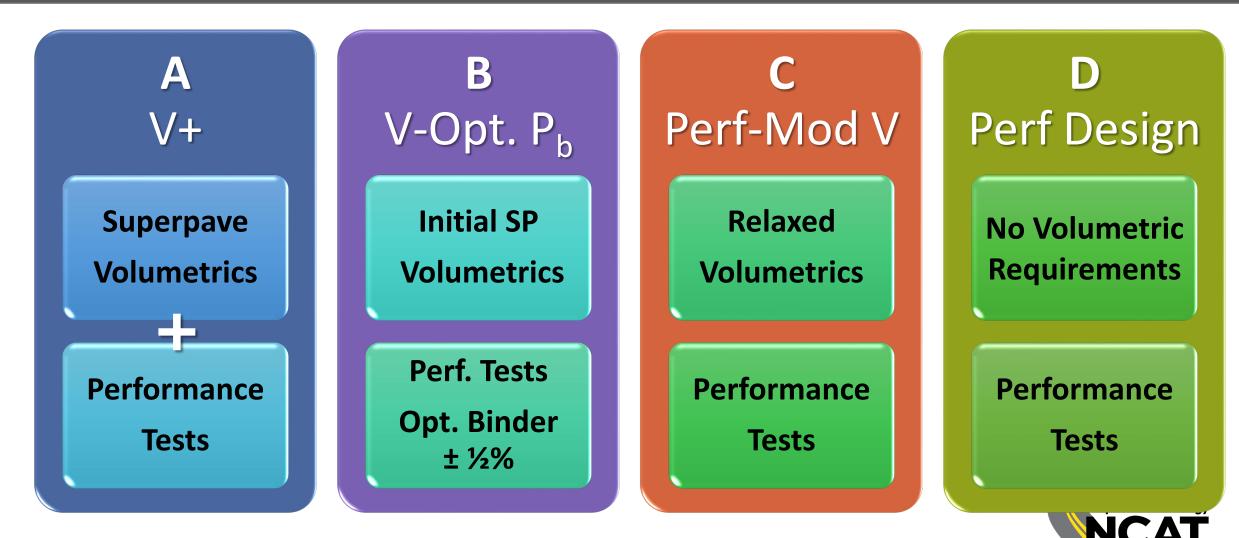
- All BMD Performance Tests have benefits and limitations
 - Good laboratory practices are vital to make BMD work
 - Controlling density on BMD specimens is essential
- Performance tests are useful tools to improve mixture performance
- Don't let the perfect be the enemy of the good (or better)

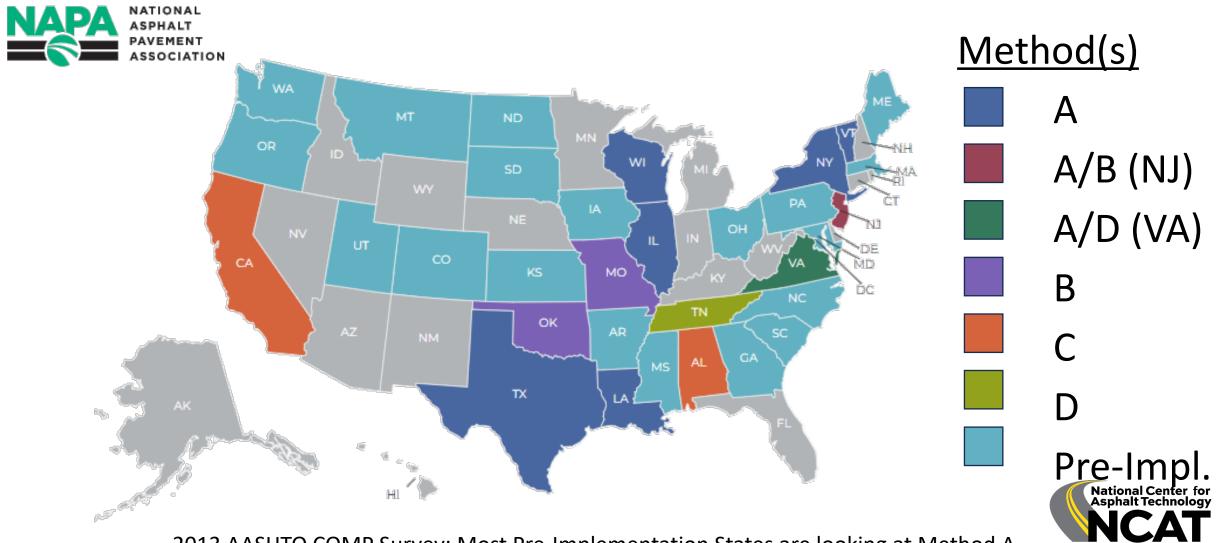


Mixture Aging

- "Appropriately Conditioned Specimens"
- Most rutting occurs in the short-term
 - Short-term oven aged lab-produced mix or re-heated plant-produced mix
- Most cracking occurs in the medium to long-term
 - Some form of long-term aging is most appropriate
 - Practical during mix design, but...
 - Impractical in a production setting
 - How can this be incorporated in BMD specs?

- A. Volumetric Design with Performance Verification
- B. Volumetric Design with Performance Optimization
- C. Performance-Modified Volumetric Design
- D. Performance Design




National Center for Asphalt Technology NCAT

BMD Approaches (AASHTO PP 105)

AT AUBURN UNIVERSITY

Implementation Status (11/01/2023)

2013 AASHTO COMP Survey: Most Pre-Implementation States are looking at Method A

AT AUBURN UNIVERSITY

Some BIG Questions

- Which performance tests will be selected?
- What aging/conditioning protocol should be used?
- How will the performance tests be used in the mix design process?
- Will you use the performance tests in Quality Assurance?
- What criteria should be used in specifications?

Summary

- BMD versus Volumetrics
 - Idea of binder quality in the final mixture
- AASHTO BMD Specifications
- Multiple options for performance tests
- Four different BMD approaches
 - Varying volumetric requirements
 - Varying innovation potential

Resources

- NAPA BMD Resource Guide
 - <u>https://www.asphaltpavement.org/expertise/engineering/resources/bmd-resource-guide</u>
- 'Training and Resources'
 - NAPA IS-143 Balanced Mix Design Resource Guide
 - NAPA IS-145 Guide of Asphalt Mixture Specimen Fabrication for BMD Performance Testing
- AASHTO BMD Specifications

NCAT Test Track Conference – May 7-9, 2024

Thank you! Questions?

MAPA Spring Training - February 7th, 2024 Adam J. Taylor, P.E.

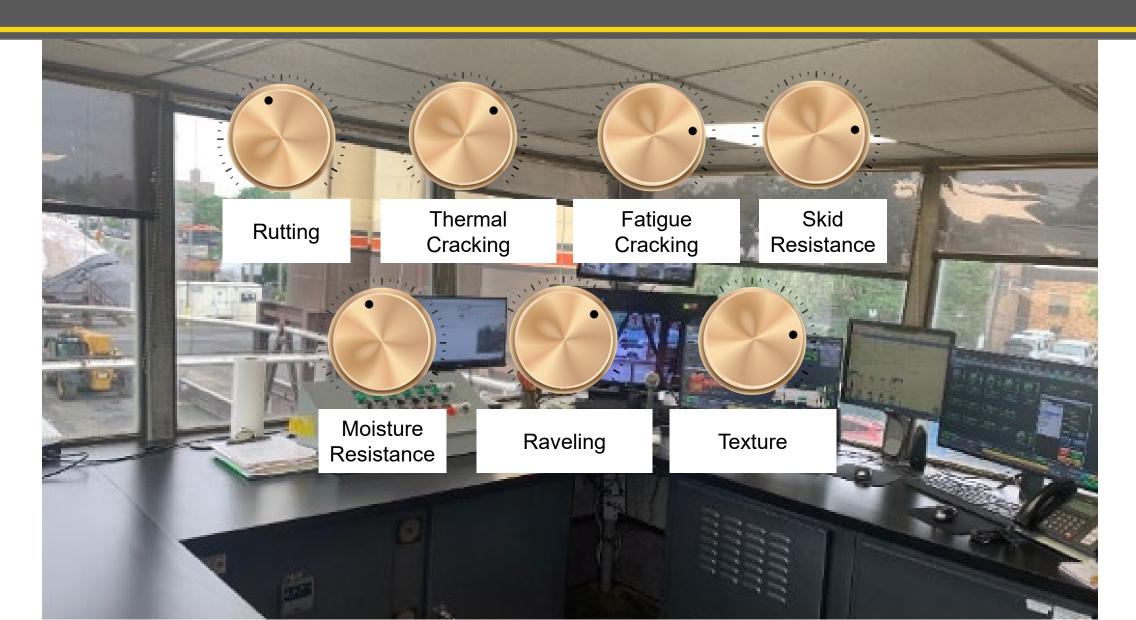
National Center for Asphalt Technology (NCAT)

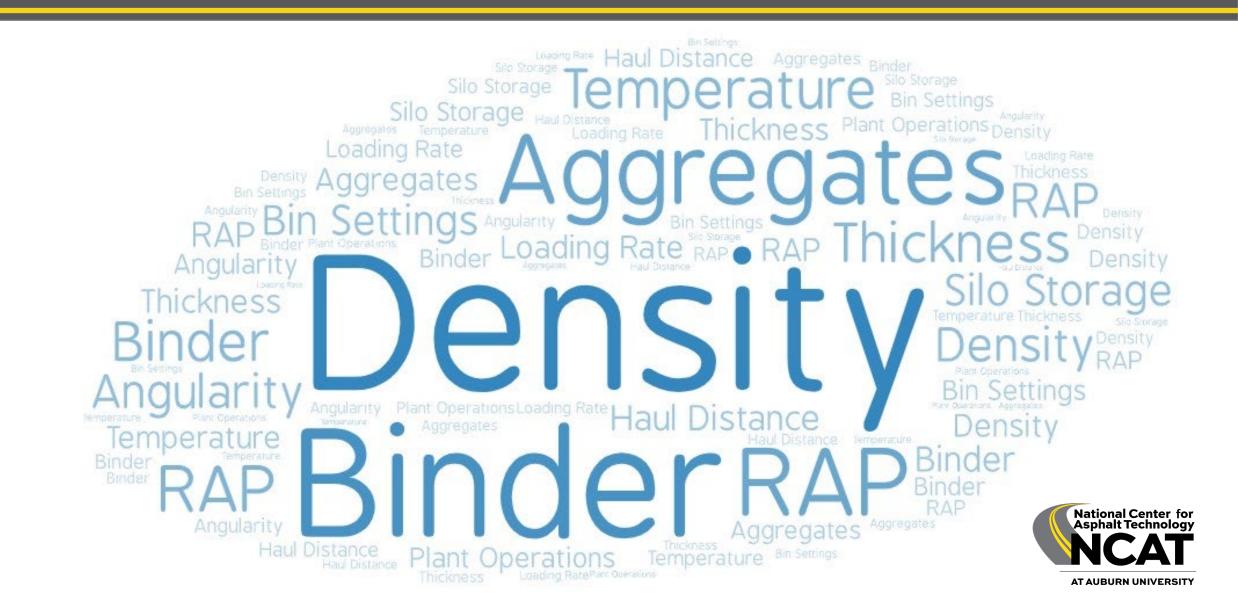
National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

BMD Mix Design Adjustments

MAPA Spring Training - February 7th, 2024 Adam J. Taylor, P.E. National Center for Asphalt Technology (NCAT)

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY


How do we get from here...



What can we actually control?

Asphalt Pavement Performance

Presentation Outline

What mix design variables can be changed to improve

- Rutting resistance
- Cracking resistance
- Moisture susceptibility

What mix design variables affect performance?

<u>Binder</u>

- Binder content
- Binder grade
- Crude source
- Anti-strip
- Additives

Aggregate

- Gradation
- Angularity
- Strength

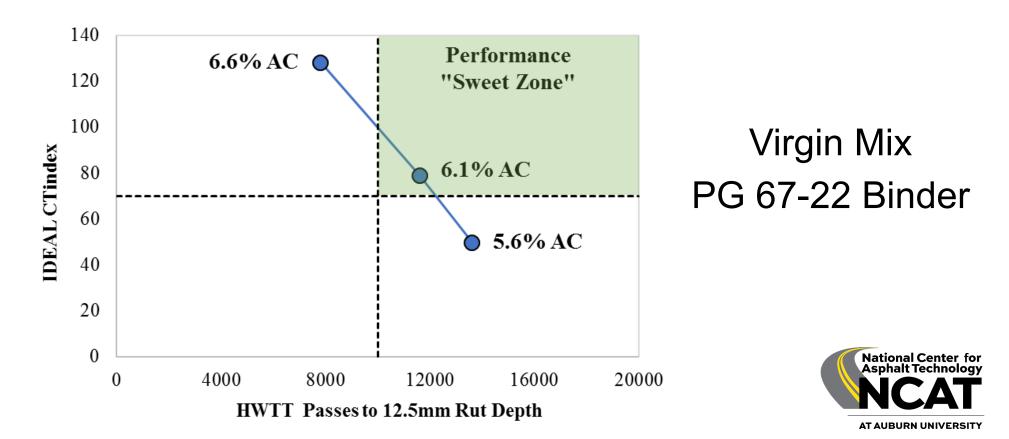
Interaction between

variables

• Dust

Recycled

- RAP content
- RAS content
- Binder grade
- Plastics
- Rubber
- Fibers



Rutting – Possible Strategies

- Adjusting aggregate gradation
- Using a stiffer asphalt binder
- Polymer modification
- Lowering asphalt content
- Increasing recycled materials content
- Adding fiber additives

- Factor: binder content
- Hamburg Wheel Tracking Test (HWTT)

- Factor: binder grade
- Asphalt Pavement Analyzer

Binder Type	APA Rut Depth (mm)
PG 64-22	3.8
PG 70-22	2.4
PG 76-22 (SBS)	1.4

12.5 mm NMAS Virgin Mix

(Data from Zaniewski, 2003)

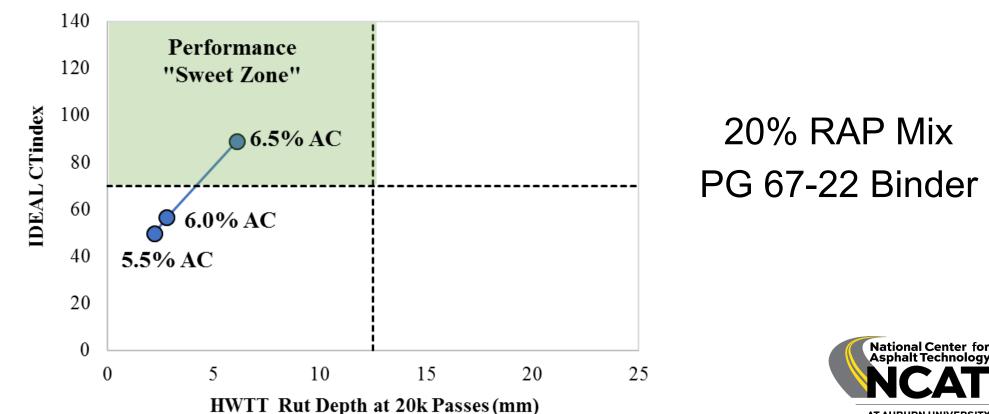
- Factors: RAP content, binder content
- HWTT

	HWTT Rut Depth (mm)						
Binder Content	35% RAP mix, PG 64-34 binder	45% RAP mix, PG 64-34 binder					
4.3%	3.0	2.4					
4.8%	4.0	3.2					
5.3%	4.7	3.8					

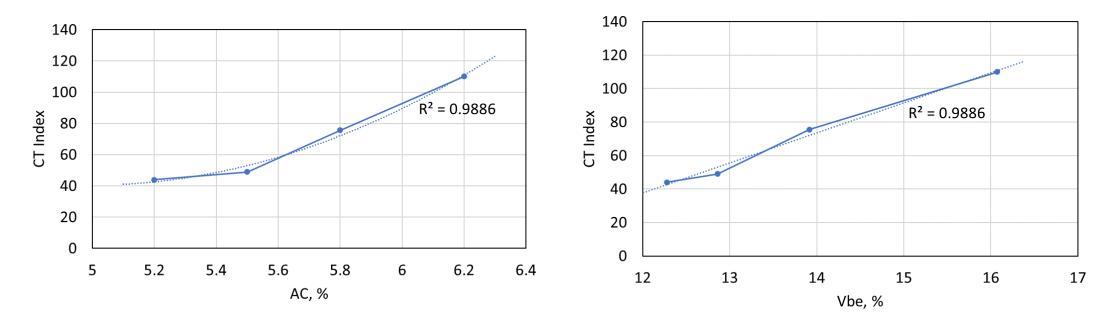
- Factor: Coarse Aggregate Type
- Hamburg Wheel-Tracking Test (HWTT)

Agg Type	HWTT Rutting (mm)
Natural Gravel	8.7
Limestone	7.1

19% RAP Mix PG 58-28 5.8% AC


Cracking – Possible Strategies

- Increasing asphalt content or V_{be}
- Lowering recycled materials content
- Using a softer (better quality) asphalt binder
- Adding a rejuvenator or other additive
- Change crude source



- Factor: binder content
- Indirect Tensile Asphalt Cracking Test (IDEAL-CT)

AT AUBURN UNIVERSITY

- Factor: Volume of Effective Binder (V_{be}) @ Ndes
- IDEAL-CT

20% RAP Mix

PG 76-22

- Factors: RAP content
- IDEAL-CT & Hamburg Wheel Tracking Test (HWTT)

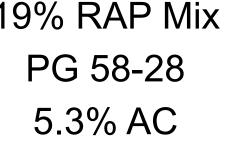
	Laboratory	Test Result	
RAP Content	IDEAL-CT	HWTT Rutting (mm)	PG 70-28 4.7 – 5.0% AC
0%	124	5.6	
15%	77	3.0	
30%	37	2.1	National Center for Asphalt Technology

- Factor: rejuvenator dosage
- IDEAL-CT

Rejuvenator Dosage	CT _{index}
No rejuvenator	21.1
Low	38.1
Medium	44.1
High	42.2

45% RAP Mix PG 64-22 5.2% AC

- Factor: softer binder
- I-FIT


Low-temperature	Flexibility Index						
PG	4h@135C on loose mix	5d@85C on loose mix					
xx-22	4.0	1.7					
xx-28	5.8	3.0					
xx-34	9.0	5.1					

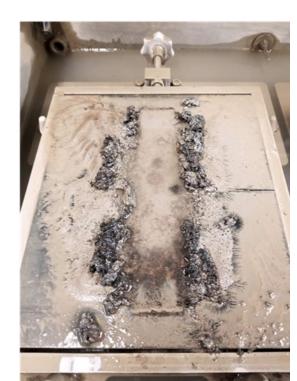
(Data from Bonaquist, 2016)

- Factor: Coarse aggregate source
- IDEAL, I-FIT, & DCT

Aggragata	Lab	ooratory Res	sult	
Aggregate Type	IDEAL-CT	I-FIT	DCT (J/m ²)	19% RAF PG 58-
Natural Gravel	83	12.1	597	5.3% A
Limestone	64	7.4	361	

- Factor: binder source (quality)
- I-FIT

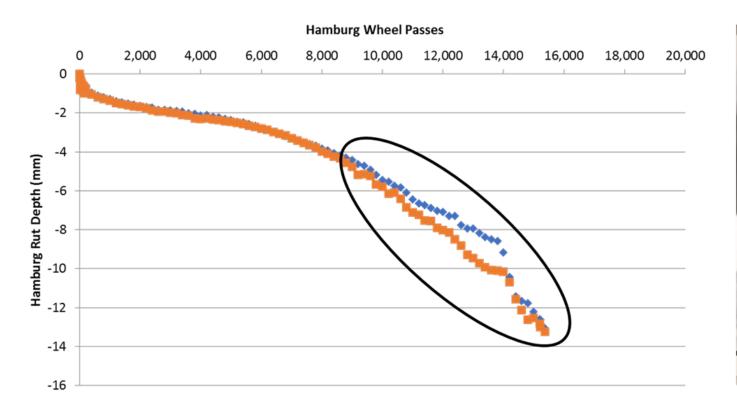
Binder Source	Flexibility Index	12% RAP M
Source A, ΔTc: -0.2	10.5	PG 70-28
Source B, ΔTc: -5.7	5.5	5.6% AC


Mix

Stripping – Possible Strategies

- Changing binder source
- Changing aggregate type
- Adding/changing an anti-strip agent

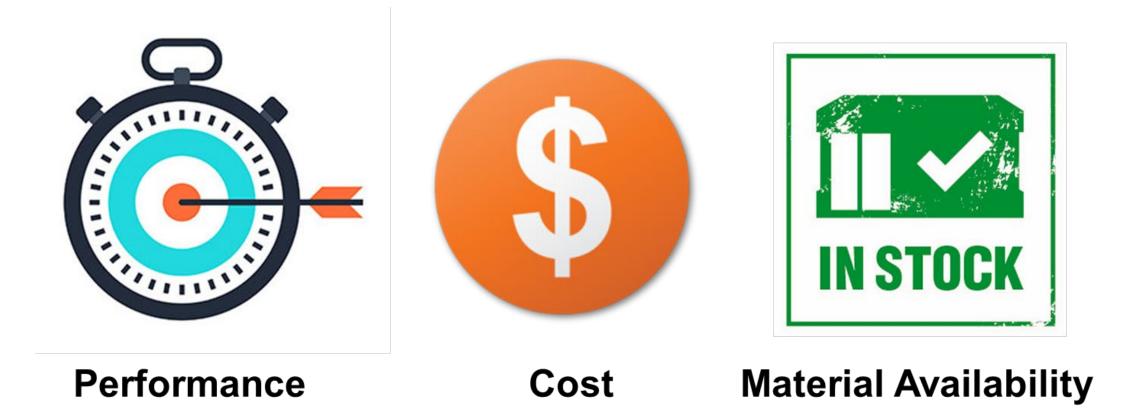
Stripping: Case Study 1


- Factor: binder source
- HWTT

Binder Source	HWTT Rut Depth at 20k Passes	15% RAP Mix
Source A	3.0 mm	PG 76-28
Source B	> 12.5 mm	5.6% AC

Stripping: Case Study 1

• PG 76-28 Binder, Source B


Stripping: Case Study 2

- Factor: liquid anti-strip additive
- Tensile Strength Ratio (TSR)
- Virgin mix, granite aggregate (with known stripping issues), 5.4%
 AC

Liquid Anti-strip	TSR
No Anti-strip	0.26
+ Product A	0.67
+ Product B	0.85

Factors to Consider for Design Optimization

Closing Remarks

- "When faced with a problem with multiple solutions, begin with the simplest approach first"
- Example: Failing mix design. Need 15 more CT_{Index} units
 - Are data repeatable? Do they make sense based off of historical results?
 - Change gradation? RAP source? Aggregates?
 - Identify different binder source? Binder grade? Decrease RAP content?
 - Additives, Fibers, Oils, Recycling Agents (These are not bad!)
 - What is the simplest/cheapest approach that gets the job done?

NCAT Test Track Conference – May 7-9, 2024

Thank you! Questions?

MAPA Spring Training - February 7th, 2024 Adam J. Taylor, P.E.

National Center for Asphalt Technology (NCAT)

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

BMD Processes and Procedures

MAPA Spring Training - February 7th, 2024 Adam J. Taylor, P.E. National Center for Asphalt Technology (NCAT)

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

NCAT Research on BMD Processes

- How do we make BMD work in the lab?
- Related NCAT Research
 - NCAT Round Robin
 - Achieving Target Air Voids
 - Specimen Preparation
 - IDEAL-CT Equipment Comparison
 - Resources to help

- Help collect data on mixture performance tests that are being considered as part of Balanced Mix Design implementation efforts
 - Understanding Test Variability
 - Within Lab
 - Between Lab
- Help test users gain experience and confidence in their ability to perform these tests
- 2019 and 2022 Round Robins thus far
 - NCAT Report 22-01 (2019 Round Robin)

- 200+ Buckets (!) sampled for each Round Robin
 - Mix Sampled from a Stockpile that had been passed through a Material Transfer Vehicle
- Plant Mix sent to participating labs
- Requested an Excel Summary file for each lab per test in addition to the raw data
- Labs provided with detailed fabrication and testing instructions

Test ID	2019	2022
Hamburg	32	40
I-FIT	20 (13 Phase II)	
IDEAL-CT	15 (14 Phase II)	46
APA	10	15
HT-IDT		16
IDEAL-RT		13

- Phase 1
 - Labs sent buckets of plant mix
 - Each lab prepared and tested their own specimens
- Phase 2 (2019 Only)
 - All specimens fabricated at NCAT
 - Specimens shipped to participating labs for testing

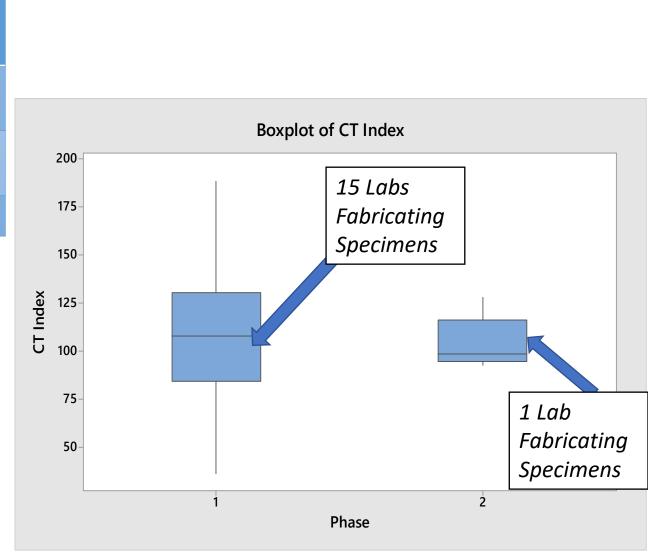
Example Data Collection Form

1	NCAT Hamburg Round Robin	- Data S	ummary :	Sheet								
2												
3	General Equipment	Informa	ation									
4 (Gyratory Compactor Make and Model:											
5 H	Hamburg Make and Model:											
6 5	Single or Dual Wheel Tracker?											
7												
3	General Specin	ien Info)									
) (Sample ID (only the 4 used for testing)											
0	Date Compacted											
1 1	Number of Gyrations to achieve 62 mm											
2 (Gmb - Dry Mass in Air, g											
3 (Gmb - Mass of Specimen underwater, g											
4 (Gmb - SSD Mass of Specimen, g											
5 (Gmb											
6	Air Voids (%) - Use Provided Gmm of 2.691											
7	Hamburg Results St	ımmary	/****									
8 5	Sample Location*											
9 I	mmersion Time**											
0	Max Rut Depth at 2,500 passes (mm)***											
1	Max Rut Depth at 5,000 passes (mm)											
2	Max Rut Depth at 7,500 passes (mm)											
3 1	Max Rut Depth at 10,000 passes (mm)											
4	Max Rut Depth at 15,000 passes (mm)											
5 [Max Rut Depth at 20,000 passes (mm)											
6												
7	* LB = Left Back, LF = Left Front, RB = Right Bac	k, RF = I	Right Fror	nt								
8	** = Time between the specimens being cover	ed with	water and	d the tes	t starting -	Includes	the require	d 45 minu	te conditioni	ng period a	t 50 degre	es
9	*** = If your data collection does not have the	rut der	oth at a pa	articular i	nterval, y	ou may in	terpolate b	etween the	e two surrou	nding value	es	
0 *	**** = In addition to the results summary belo	ow, plea	ase send t	he raw ru	it depth v	ersus cycle	es to failure	e				

NCAT Round Robin – Data Analysis

- Populate Database
 - Data quality inspection
 - ASTM E 178 Outlier Evaluation
- Descriptive Statistics
- Boxplot Analysis
- ASTM E691 Variability Analysis
 - Repeatability (Within-Lab)
 - Reproducibility (Between-Lab)

NCAT Round Robin – Example Summary Report


Lab ID	N	Air Voids (%)	Peak Load (kN)	FE (J/m²)	ITS (kPa)	СТ	Index		z-score (Average CT	
		Average	Average	Average	Average	Average	St Dev.	CV (%)	Index)	
1	5	6.9	20.4	12,580	1,400	96.8	15.4	15.9	-0.428	
2	5	7.1	16.8	11,297	1,149	110.2	11.1	10.1	0.190	
3	5	7.0	21.2	11,629	1,456	62.0	15.2	24.5	-2.033	
4	5	7.1	16.8	11,633	1,148	131.4	9.4	7.1	1.168	
5	6	7.3	20.4	13,388	1,393	114.3	15.2	13.3	0.383	
	•••	•••	•••	•••	•••	•••	•••			

National Center for Asphalt Technology

AT AUBURN UNIVERSITY

NCAT Round Robin – IDEAL-CT ASTM E691 Variability Estimates

Round Robin Year	Number of Labs	Mean CT _{Index}	Within- Lab CV (%)	Between- Lab CV (%)
2019 (Phase I)	15	111.1	19.5	35.3
2019 (Phase II)	14	103.7	18.8	20.2
2022	46	106.0	20.5	30.2

NCAT Round Robin – Hamburg ASTM E691 Variability Estimates

Round Robin Year	Number of Labs	HWTT Wheel Passes	Mean Rut Depth (mm)	Within-Lab CV (%)	Between- Lab CV (%)
2019	29	10,000	2.91	9.0	21.1
2022	38	10,000	2.87	10.4	29.5
2019	29	20,000	3.53	9.4	25.9
2022	38	20,000	3.49	9.5	31.1

• Limitation – Mixture with low rutting and no stripping in both studies

NCAT Round Robin – Rapid Rutting ASTM E691 Variability Estimates

• Note – RT between-lab variability driven higher by one lab

NCAT Round Robin – What have we learned?

- Well written instructions and data forms go a long way
- Specimen preparation is a main driver of our variability in these tests
- A better understanding of variability for commonly used mixture performance tests
- Valuable feedback from participants

NCAT Round Robin – What can we continue to learn?

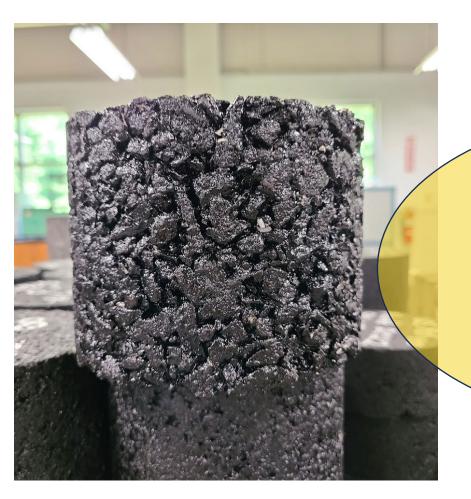
- Helping labs improve their proficiency and understanding of mixture performance tests
- Improved understanding of test variability and helping develop standardized precision statements
 - Impact of material diversity
- Planning underway for next round robin
 - Anticipate sampling mix summer 2024

Why is Specimen Fabrication so Important?

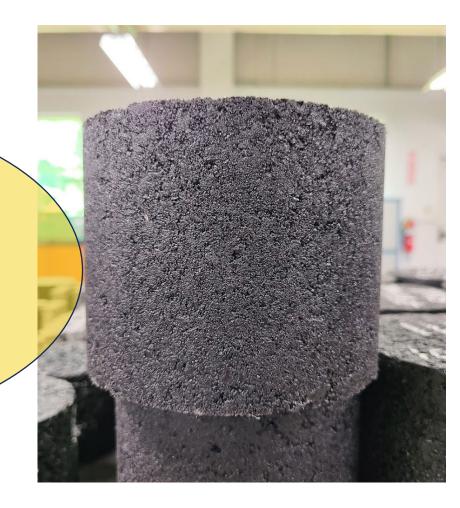
- Specimen Preparation is the 'foundation' of the mixture performance testing house
 - You can't build a good structure on a poor foundation
- NCAT experience is that much more can go wrong during specimen preparation than while running the test
 - Especially simpler tests e.g. IDEAL-CT

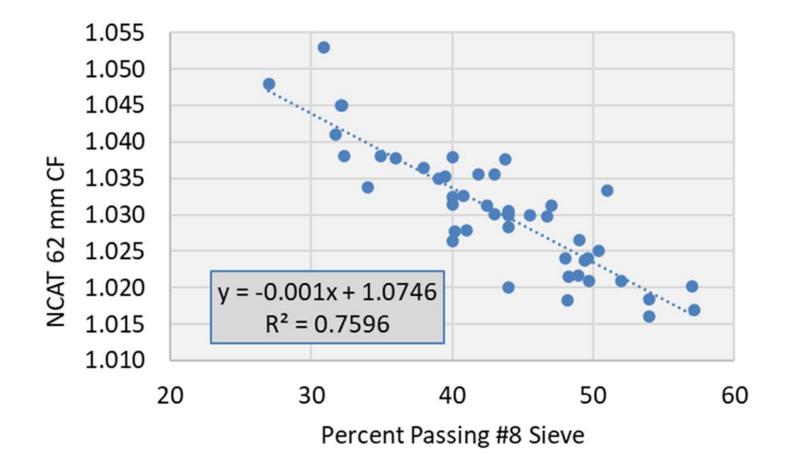
Resources to Help – Specimen Fabrication

- Achieving a target specimen air voids when compacting specimens to a height while minimizing trial specimens
- Guidance on material handling and aging in the laboratory to help produce consistent specimens
 - Limiting Segregation
 - Limiting Excess Binder Oxidation



Achieving Target Specimen Air Voids


- NCAT Trial Mix Weight Estimating Spreadsheet
 - NAPA BMD Resource Guide --- 'Tools'
 - <u>https://www.asphaltpavement.org/expertise/engineering/resources/bm</u> <u>d-resource-guide/bmd-tools</u>
 - Uses
 - Estimate mass of mix in gyratory mold to achieve target air voids
 - Refine trial specimen mass
 - Either one or two trial specimens
 - Detailed Instructional Video


Achieving Target Specimen Air Voids

How much mass is needed to achieve equal air voids between these different mixtures?

Achieving Target Specimen Air Voids

Estimate Initial Trial Weight

<u>Inputs</u>

- G_{mm}
- Target Air Voids
- Percent Passing #8 Sieve

National Center for Asphalt Technology
at AUBURN UNIVERSITY

2.485

62

45

CF

1.029

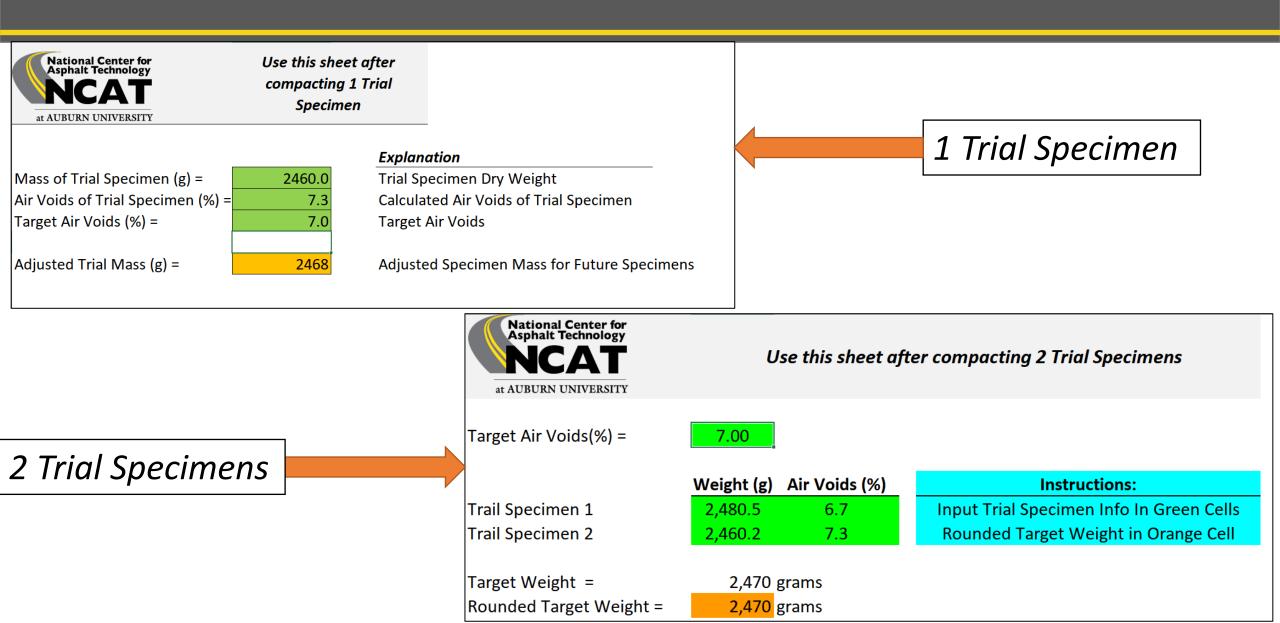
2,461

2,460

Mix Gmm: Specimen Height (mm): Target Air Voids (%) Passing #8 Sieve (%)

> Estimated CF User Input CF

Estimated Weight (g): Rounded Weight (g):



NCAT Trial Weight Estimating Spreadsheet

Typical Values					
Test	Specimen Height (mm)	Target Air Voids (%)			
HB/IDEAL	62	7.0			
APA	75	7.0			
TSR	95	7.0			
OT/IDT	125	7.5 - 8.0			
I-FIT/DCT	160	7.5 - 8.0			

Average Starting CF Values				
Height (mm)	Average CF			
62	1.036			
75	1.031			
95	1.030			
125	1.028			
160	1.024			

Refine Trial Weight

BMD Specimen Preparation Guide

- NAPA IS-145
 - NAPA BMD Resource Guide
 - Training and Resources
 - <u>https://www.asphaltpavement.org/expertis</u> <u>e/engineering/resources/bmd-resource-</u> <u>guide/training-resources</u>

Guide on Asphalt Mixture Specimen Fabrication for BMD Performance Testing

.........

lathan Moore & Adam Taylor National Center for Asphalt Technology (NCAT) at Auburn University

Specimen Preparation Videos

- NAPA BMD Resource Guide
 - Training and Resources
 - Quick Overview Instructional Videos (total ~16 minutes)
 - Aggregate Processing
 - Aggregate Batching
 - Mixture Heating and Mixing
 - Mixture Sampling, Re-heating, and Splitting
 - Mixture Aging and Compaction
 - Supplement to Detailed Information in the Specimen Preparation Guide

Lab Mix Best Practices

- Binder Heating
 - Minimal amount to do the job
 - Excessive aging will lower your cracking resistance
- Fractionating Aggregate
 - Avoiding Segregation
- Consistent RAP Heating Practices between labs
- Oven timers are a good investment
 - RAP and Binder
 - Long-term aging



Heating Asphalt Binder

- More time in oven = More oxidation
- Practice "First In, First Out" with binder
- Heat the minimum time for binder to reach target mixing temperature
- Don't reheat the same binder more than twice
- Remove binder from ovens as soon as you are finished mixing
- Oven timers are your best friend

Why Fractionate Aggregates?

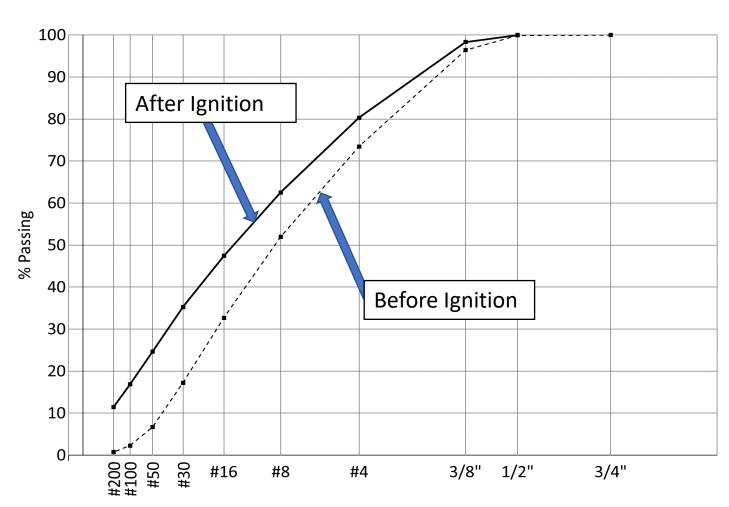
National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

How Much Should I Fractionate?

- <u>Answer</u>: Verify the Final Product is Acceptable
- Make one extra gradation specimen per mix
 - "Check Batch"
- Compare gradation to target aggregate gradation
 - Add fractionation sieves if necessary
 - General Rules of Thumb
 - <1.5% difference two sieves below NMAS
 - <1.0% on other sieves
 - <0.5% on dust

Sieve	Verification	Blend	
(mm)	Gradation	Gradation	Difference
25.0	100.0	100.0	0.0
19.0	100.0	100.0	0.0
12.5	100.0	99.9	0.0
9.5	97.5	97.5	0.0
4.75	76.8	76.2	-0.6
2.36	50.7	50.3	-0.4
1.18	34.8	34.7	0.0
0.6	25.6	25.6	0.0
0.3	17.6	17.5	-0.1
0.15	9.4	9.3	-0.2
0.075	5.9	5.7	-0.2

Batching

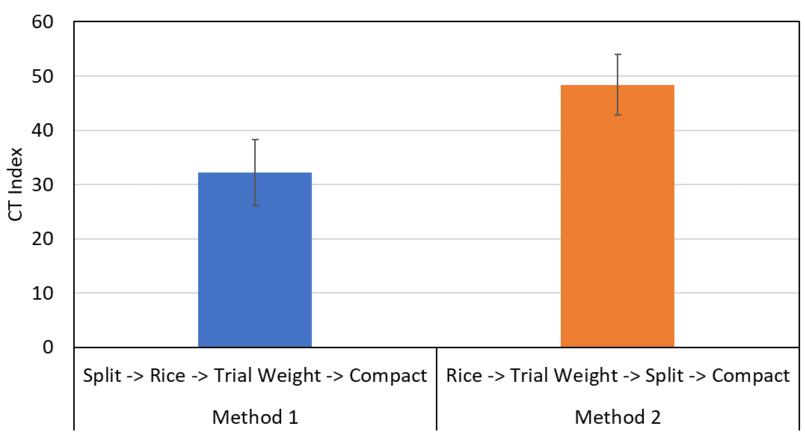


- Batch from a large representative sample using a flatbottomed scoop
- Never batch directly from a bucket
 - Exception: Single Size Material

Fractionating RAP

- RAP Gradations are not the same before and after ignition/extraction!
 - Pre-ignition
 - Use for fractionation
 - Post-ignition
 - Use for design

Specimen Preparation – Plant Mix


- Blend multiple buckets/boxes of same mix when possible
 - Don't sample the bare minimum
- Heat each bucket once
 - More re-heats = More oxidation
- Heat mix minimum time required
 - Thermometer in mix
- Limit Pans in the Oven!
 - Recommend maximum of 6

Specimen Preparation – Time in Oven

- Method 1 specimens in oven for ≈ 60 – 90 minutes longer
- Statistically different results

Specimen Preparation - Segregation

Plant Mix – Avoiding Segregation

- Read AASHTO R47!
- Quartermaster
 - Blend multiple buckets or boxes
- Splitting Pan
 - Homogenize mix before splitting into individual pans



Avoiding Mix Segregation

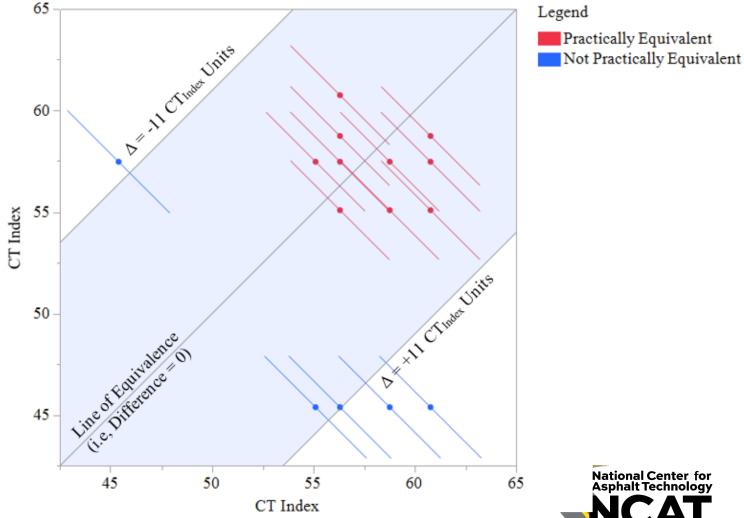
- Stir mix well in transfer device
- Add to gyratory mold in one pour without shaking or stopping

Specimen Fabrication – Plant Mix

- Bad Practices
 - Scoop the mix you need directly out of the bucket
 - Re-heating the bucket multiple times
 - Heating buckets overnight or more than half a day
 - Leaving pans of mix in the oven for excessive time
- Key Point
 - These practices lead to excessive segregation and binder oxidation which flow directly into test results...

Specimen Prep and Replication

- Do the job once Do the job right
 - Combining production runs can create
 problems
 - Don't make 4 specimens to get 4 specimens
 - Make an extra specimen
 - Variability increases between production runs
- Benefits will outweigh the costs
 - Recommend the following **minimums**:
 - IDEAL-CT = 5 specimens (easy to get 6)
 - HT-IDT = 3 specimens
 - IDEAL-RT = 3 specimens


Equipment Study – IDEAL-CT

Equipment Study – IDEAL-CT

- NCAT Report 23-02
- 15 head-to-head comparisons
- All data for each comparison combined (N≈50)
- Equivalence limit set at 20% of the mean
- Only one device produced nonequivalent comparisons
 - Lead to improvements by the manufacturer

AT AUBURN UNIVERSITY

What does it all mean?

- It takes a lot of work in the lab to make BMD 'work' the way that it should
 - Repetition and attention to detail
- Understand the typical variability of performance tests
- Start with great specimen preparation practices
- Test enough specimens and make extras the first time
- There are resources to help you

Special Thanks

- A lot of great people at NCAT contributed to all of this work
 - Nathan Moore
 - Fan Yin
 - Jason Moore
 - Carolina Rodezno
 - Javed Monsegue
 - Madison Fillingim

Thank you! Questions?

MAPA Spring Training - February 7th, 2024 Adam J. Taylor, P.E.

National Center for Asphalt Technology (NCAT)

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

Achieving Density

CATERPILLA

FABICK

Caterpillar: Confidential Green

CAT

CAT

Presented by: Bryan Downing, Caterpillar

CATERPILLAR

CATERPILLAR

.

.

What is Compaction?

- Mechanical Process
- Removes specified amount of air voids
- Develops stone on stone contact
- Builds strength

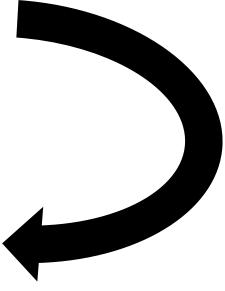
Compact While the Mix is HOT

100.0

- Stay close to paver be safe!
- Limited time!

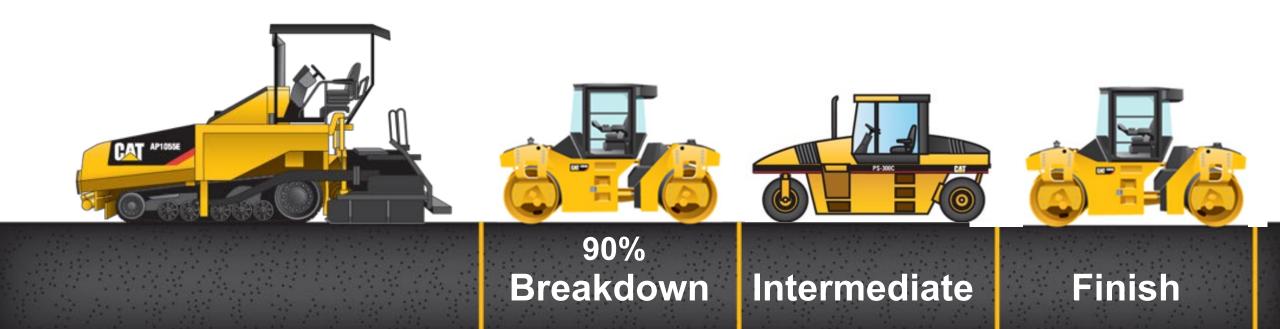
Spot 2

Temperature is Critical


320 -260 -240 -220 -160F

320 – 260F (160-130C) Breakdown rolling 260 – 220F (130-105C) Intermediate rolling

240 – 190F (115-90C) possible tender zone 220 – 160F (105-70C) Finish rolling


160F (70C) – Stop rolling

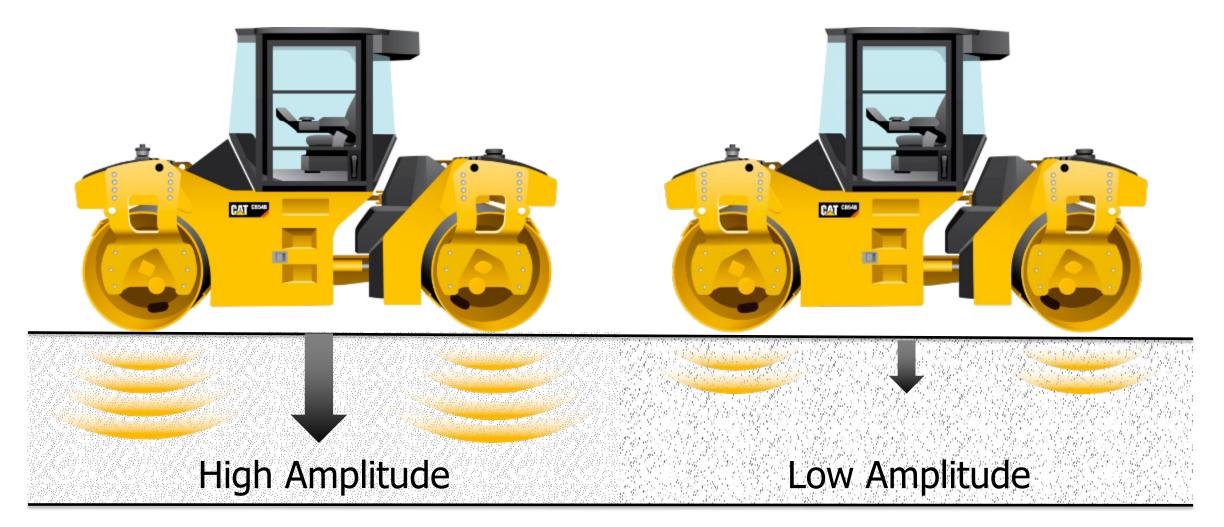
Keep steel drums off the mix!!!

Phases of Compaction – "temp zones"

- Breakdown gets majority of density 90% or better
- Intermediate gets final density
- Finish cleans up/removes any roller marks, slight gain density

Types of rollers

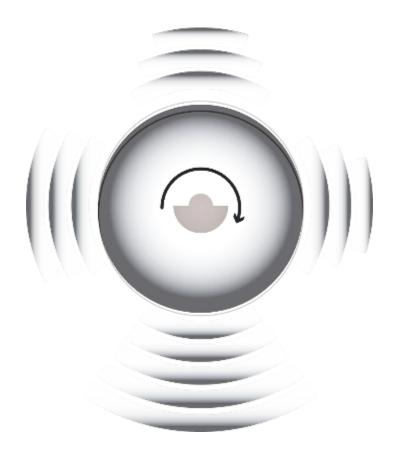
- Static steel drum
 High PLI
- Vibratory steel drum
 - Amplitude, frequency
- Oscillation
- Pneumatic
 - Tire pressures, ballast weight
- Combination


Vibratory Steel Drum

- Breakdown, intermediate and finish rolling
- Settings for amplitude
 and frequency
- Static mode for finish rolling

Build density from the top down

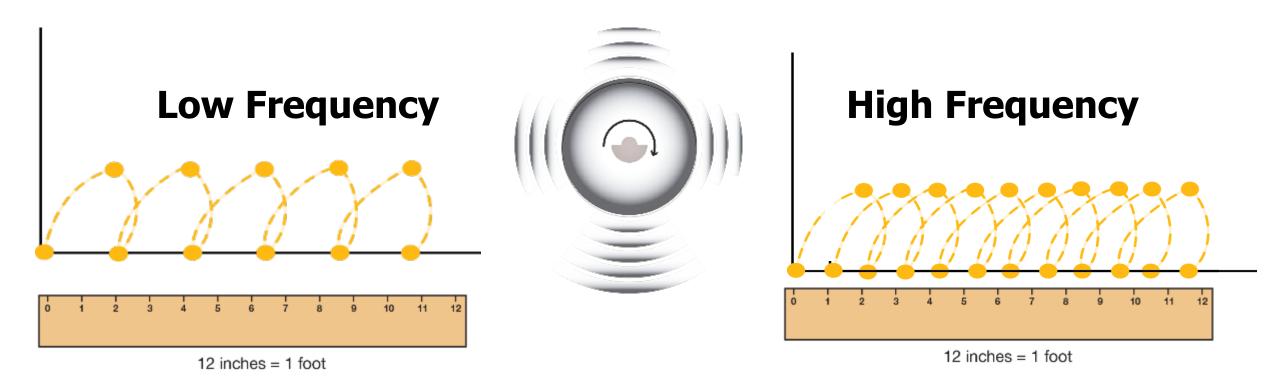
Amplitude = compactive effort



Caterpillar: Confidential Green

Amplitude Checklist

Factor	Lower Force 0.25 - 0.6 mm	Higher Force >0.6 mm
Layer Thickness	< 2.0 in (50mm)	> 2.0 in (50mm)
Base Support	Rigid	Flexible
Binder Viscosity	Low (unmodified)	High (modified)
Aggregate Shape	Rounded	Angular
Ambient Temperature	High	Low
Base Temperature	High	Low



RPM of eccentric weight or shaft in drum

Caterpillar: Confidential Green

Impacts per foot (IPF)

6 ipf

12 ipf

Roller speed is constant

Caterpillar: Confidential Green

Impacts per foot, Frequency & Roller Speed

10 – 14 impacts per foot

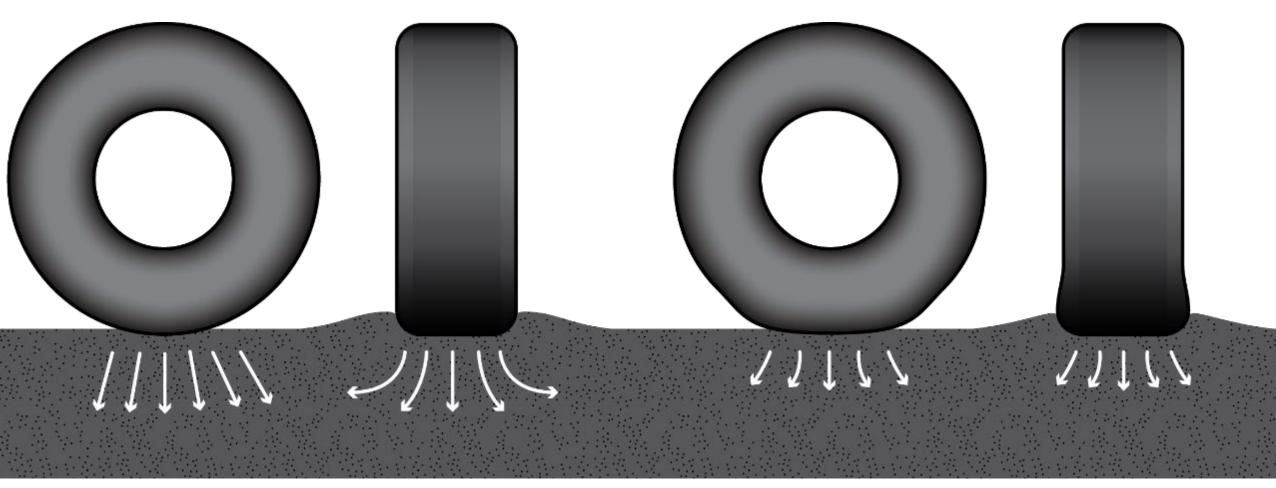
Higher Amplitude ≈ Lower Frequency

Amplitude	Frequency
0.86 mm	2520 vpm
0.73 mm	2520 vpm
0.44 mm	3800 vpm
0.33 mm	3800 vpm

- When changing to high amplitude, frequency will be lower
- What does this mean?

Pneumatic Rollers

- Most commonly used for intermediate rolling
- Knead the mix



- Close up surface voids and tension cracks
- Efficient building density

Build density from the bottom up

Adjusting Tire Pressures & Ballast Weight

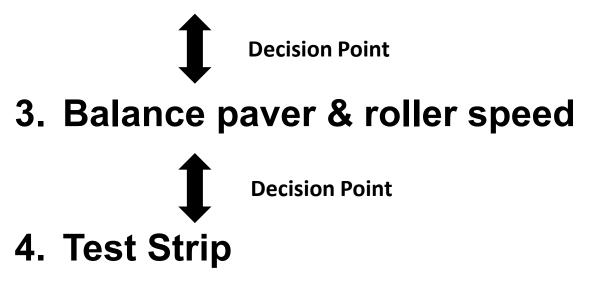
Higher Pressure

Lower Pressure

Getting More Density

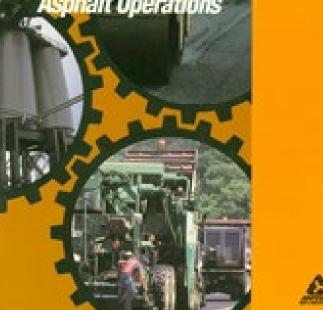
- Add passes
- Increase amplitude
- Increase tire pressure or ballast
- Change rollers
- Add rollers
- Work closer to the paver
- Lower working speed

5-Steps to Establishing a Rolling Pattern


- 1. Schedule a full-time <u>QC technician</u> to do a Test Strip
- 2. Set a paver speed to get required tonnage per shift
- 3. Target 90% density after the <u>breakdown</u> roller(s)
- 4. Perform Test strip
 - Determine <u>number</u> of passes required for <u>each</u> roller
 - Record the roller settings of Amplitude & Frequency
 - Know the Time Available for Compaction (PaveCool)
 - 10 impacts per foot for density & smoothness
 - Roller distance behind the paver and each other
- 5. Check, check! and adapt as conditions change

Establish an effective rolling pattern

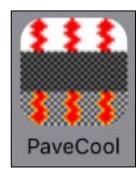
- 1. Based production and density
- 2. Equipment Selection


5. Verify during production

Planning ≈ 20 minutes

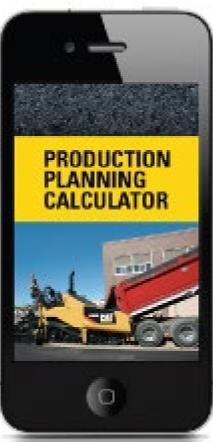
Information Series 120

Balancing Production Rates in Hot Mix Asphalt Operations



Pre- paving planning

- Tons per day
- Number of trucks needed
- Paver speed
- Roller speed
- Rolling Pattern


Tools available

- NAPA IS-120
- Paving Production Calculator App
- PaveCool App

Example: Overlay Job

- Bid 2,500 tons/day (300 tph plant)
- 8-hr paving window
- End dumping (18-ton)
- 12-ft wide, unconfined edges
- 2-inch overlay
- 12.5mm polymer-modified mix
- Autumn < 70°F
- Given 3 rollers
 - 84" steel vibratory (Cat CB64)
 - 79" steel vibratory (Cat CB54XW)
 - 82" pneumatic (Cat CW34)

Step 1: Call to schedule a QC Person

- 1. TMD of the mix
- 2. Nuke gauge
- 3. Coring rig
- 4. Infrared thermometer
- 5. List of rollers
- 6. Know amp & freq settings
- 7. Notepad
- 8. Lunch

Step 2: Paver Speed

45:10	PR	DDUCT	ION PI	LANN
Paver Speed Calculator				
General Inputs	ENGUSH U	wits	METRIC U	NITS
Paving Thickness	2.50	in	63.5	mm
Paving Width	12.00	feet	3.658	meter
Material Density Uncompacted	140	Ibs/ft3	2243	kg/m ³
Production Rate of Hot Plant Calculated Paving Speed - 100% Efficiency	300 28.6	tons/hr	272 8.72	tonnes/h m/min
	30.0	ft/min	9.16	m/min
Calculated Paving Speed - 90% Efficiency	31.5	ft/min	9.59	m/min
Calculated Paving Speed - 85% Efficiency	32.9	ti/mia	10.03	m/min
Calculated Paving Speed - 80% Efficiency	34.3	ft/min	10.46	m/min
Calculated Paving Speed - 75% Efficiency	35.8	ft/min	10.90	m/min
Effective Paving Speed	28.6	ft/min	8.72	m/min
	General Inputs Paving Thickness Paving Width Material Density Uncompacted Pover Speed @ Given Production Rate Production Rate of Hot Plant Calculated Paving Speed - 100% Efficiency Calculated Paving Speed - 95% Efficiency Calculated Paving Speed - 90% Efficiency Calculated Paving Speed - 85% Efficiency Calculated Paving Speed - 85% Efficiency Calculated Paving Speed - 80% Efficiency Calculated Paving Speed - 80% Efficiency	Paver Speed Calculator ENGLISHU General Inputs ENGLISHU Paving Thickness 2.50 Paving Width 12.00 Material Density Uncompacted 140 Production Rate Production Rate of Hot Plant 300 Calculated Paving Speed - 100% Efficiency 28.6 Calculated Paving Speed - 95% Efficiency 30.0 Calculated Paving Speed - 95% Efficiency 30.0 Calculated Paving Speed - 95% Efficiency 32.9 Calculated Paving Speed - 85% Efficiency 32.9 Calculated Paving Speed - 85% Efficiency 34.3	Paver Speed Calculator ENGLISH UNITS Paving Thickness 2.50 in Paving Thickness 2.50 in Paving Width 12.00 feet Material Density Uncompacted 140 lbs/ft ³ Production Rate Production Rate of Hot Plant 300 tons/hr Calculated Paving Speed - 95% Efficiency 30.0 t/min Calculated Paving Speed - 95% Efficiency 31.5 t/min Calculated Paving Speed - 85% Efficiency 32.9 t/min Calculated Paving Speed - 85% Efficiency 32.9 t/min	Beneral Inputs ENGLISH UNITS METRICUS Paving Thickness 2.50 in 63.5 Paving Thickness 2.50 in 63.5 Paving Width 12.00 feet 3.658 Material Density Uncompacted 140 lbs/ft ³ 2243 Power Speed @ Given Production Rate Production Rate of Hot Plant 300 tons/hr 272 Calculated Paving Speed - 100% Efficiency 28.6 t/min 8.72 Calculated Paving Speed - 35% Efficiency 30.0 t/min 9.16 Calculated Paving Speed - 30% Efficiency 31.5 t/min 9.59 Calculated Paving Speed - 85% Efficiency 32.9 t/min 10.03 Calculated Paving Speed - 85% Efficiency 34.3 t/min 10.46

Use Paving Production Calculator <u>or</u> use NAPA IS-120 Worksheets

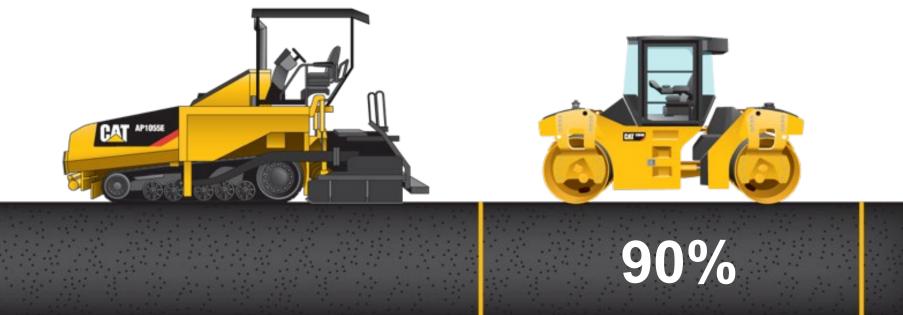
- 1. Plant tph & silo capacity
- 2. Paving window
- 3. Average truck capacity
- 4. Truck cycle time
- 5. Mat thickness (loose)
- 6. Mat width
- 7. Loose mix density

Step 2: Paver speed = 36 fpm

CATERPILLAR® PRODUCTION PLANNING 0 Paver Speed Calculator 0 General Inputs ENGLISH UNITS METRIC UNITS Trucking Paving Thickness 2.5063.5 mm **Paver Speed** Paving Width 12.00 3.658 feet meter Material Density Uncompacted 2243 kg/m3 140 Ibs/ft3 Compaction Paver Speed @ Given Production Rate Windrow **Production Rate of Hot Plant** 272 300 tons/hr tonnes/hr Yield Calculated Paving Speed - 100% Efficiency 28.6 8.72 ft/min m/min Calculated Paving Speed - 95% Efficiency 30.0 9.16 ft/min m/min Slope Calculated Paving Speed - 90% Efficiency 31.5 9.59 ft/min m/min Calculated Paving Speed - 85% Efficiency 32.9 10.03 ft/min Thickness ft/min Calculated Paving Speed - 80% Efficiency 10.46 m/min 34.0 **Job Summary** Calculated Paving Speed - 75% Efficiency 35.8 10.90 m/min min Legal **Effective Paving Speed** 28.6 8.72 ft/min m/min EXIT a

- Use 75% efficiency for end-dumping
- Use 100% for MTV

Paver Speed, trucking & plant is balanced


Continuous paving at 36 fpm on this job will deliver 2,500 tons over 8 hours

Step 3: Density target for breakdown

- Target for final density is 94%
- Goal for <u>breakdown compaction</u> is 95% of final target density

0.95 x 94% ≈ 90%

Step 4: Test Strip

- 1. Number passes
- 2. Amplitude & Frequency
- 3. 10 impacts per foot
- 4. Time Available for Compaction
- 5. Roller distance behind the paver

Choose Amplitude

Versa Vibe™ Vibratory System

Frequency: 42 Hz (2,520 vpm)

Nominal Amplitude	C	B54	CB54	1 XW	CB	64
High	0.86 mm	0.034 in	0.78 mm	0.031 in	0.67 mm	0.026 in
Low	0.73 mm	0.029 in	0.66 mm	0.026 in	0.57 mm	0.022 in
Centrifugal Force Per Drum						
High	88.8 kN	19,980 lb	88.8 kN	19,980 lb	88.8 kN	19,980 lb
Low	75.4 kN	16,965 lb	75.4 kN	16,965 lb	75.4 kN	16,965 lb

Frequency: 63.3 Hz (3,800 vpm)

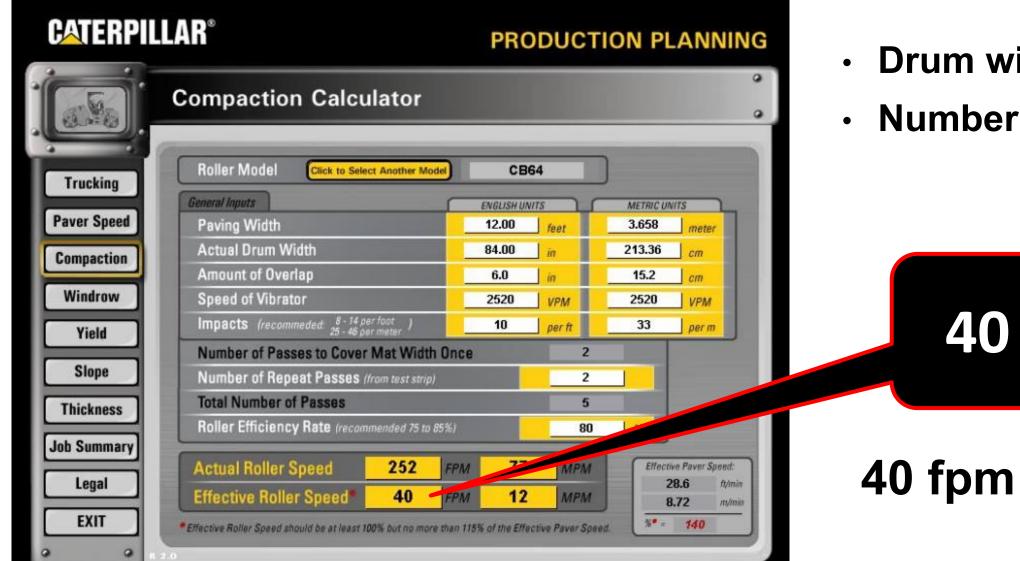
Nominal Amplitude

High	0.44 mm	0.017 in	0.40 mm	0.016 in	0.34 mm	0.013 in
Low	0.33 mm	0.013 in	0.30 mm	0.012 in	0.26 mm	0.010 in
Centrifugal Force Per Drum						
High	103.3 kN	23,243 lb	103.3 kN	23,243 lb	103.3 kN	23,243 lb
Low	77.5 kN	17,438 lb	77.5 kN	17,438 lb	77.5 kN	17,438 lb

Choose Frequency

Versa Vibe™ Vibrator	y System				CB	64
Frequency: 42 Hz (2,520 vpm) Nominal Amplitude		B54	CP5/	xw	CB	64
High	0.86 mm	0.034 in	0.78 mm	0.031 in	0.67 mil.	0.026 in
Low	0.73 mm	0.029 in	0.66 mm	0.026 in	0.57 mm	0.022 in
Centrifugal Force Per Drum						
High	88.8 kN	19,980 lb	88.8 kN	19,980 lb	88.8 kN	19,980 lb
Low	75.4 kN	16,965 lb	75.4 kN	16,965 lb	75.4 kN	16,965 lb

Frequency: 63.3 Hz (3,800 vpm)


Nominal Amplitude

High	0.44 mm	0.017 in	0.40 mm	0.016 in	0.34 mm	0.013 in
Low	0.33 mm	0.013 in	0.30 mm	0.012 in	0.26 mm	0.010 in
Centrifugal Force Per Drum						
High	103.3 kN	23,243 lb	103.3 kN	23,243 lb	103.3 kN	23,243 lb
Low	77.5 kN	17,438 lb	77.5 kN	17,438 lb	77.5 kN	17,438 lb

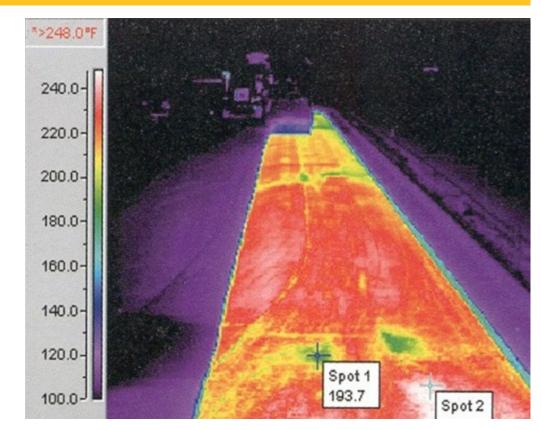
Number passes Breakdown CB64

		Breakdown CB64	Intermediate	Finish CB54-XW
		12-ton	14-ton tire	10-ton
Settings		Amp Freq 0.022" 2,520	90 psi	
1 st Pass	Temp	280F (138C)		
	Density	88%		
2 nd Pass	Temp	260 (127)		
	Density	90%		
3 rd Pass	Temp	252 (122)		
	Density	91%		
4 th Pass	Temp			
	Density			

"Effective" Roller Speed

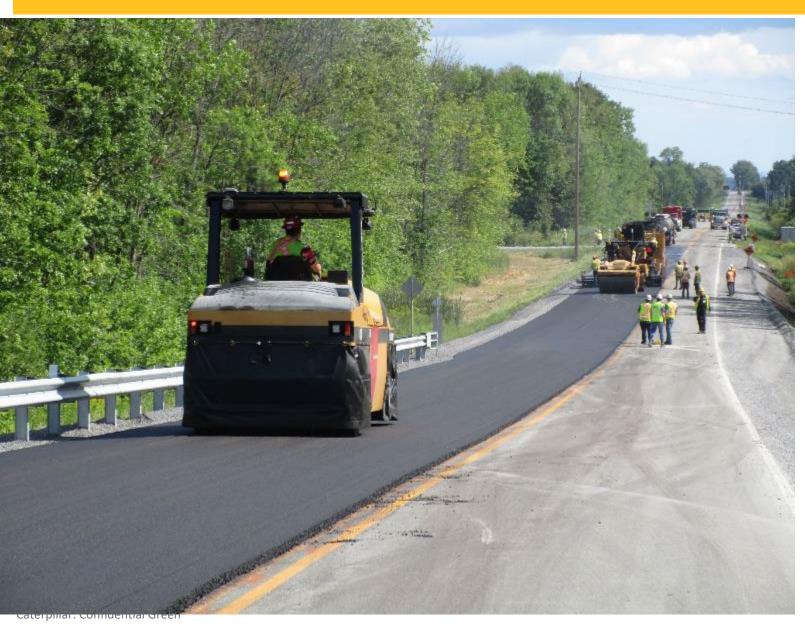
- Drum width
- Number of passes

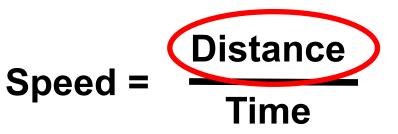
40 fpm


40 fpm > 36 fpm

What else do I have to watch?

Temperature


Temperature



Temperature

How far back from the Paver should I be ?

- Roller distance behind the paver depends on how fast the mat is cooling down!
- Temperature, temperature, temperature!!!

Step 4: Rolling Pattern Summarized

	Breakdown	Intermediate	Finish
%TMD	90-92%	90-94% ??	94%+ take out marks
Temp	280 - 252°F	??	??
Coverage	2 (5-pass pattern)	??	??
Settings	High A, Low F	90 psi	???
Distance	120 ft (36m)	???	???
Speed	252 fpm (2.8 mph)	???	???

Step 4: Repeat for all Rollers

- Busy!!!
- Everyone's watching!

Step 4: Final Rolling Pattern

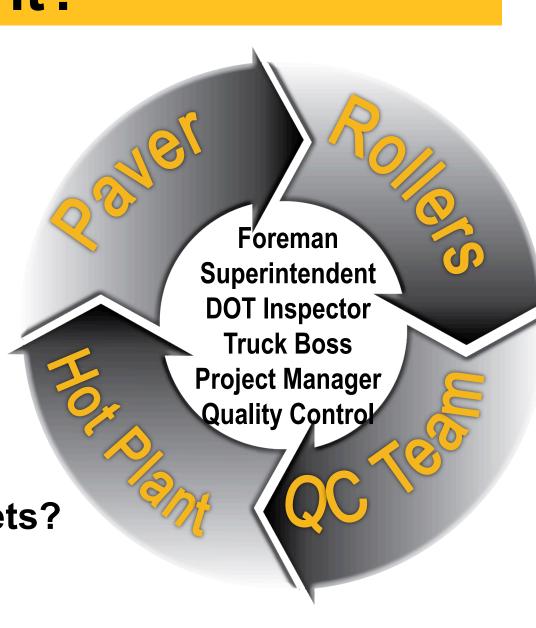
	Breakdown	Intermediate	Finish
%TMD	90-92%	92-94%	94% + take out marks
Temp	280-252°F	252-230°F	200-160°F
Coverage	2 (5-pass pattern)	3 (7-pass pattern)	2 (1 vibe/1+ static)
Settings	High A, Low F	90 psi	Low A, High F, static
Distance	◆ 120 ft	200 ft	4 200 ft
Speed	252 fpm	300 fpm	350 fpm

Step 5: Check, Check, Check

- Be prepared to make changes if conditions change
- Let Foreman and operators know

Each Project is Different

- Each project requires analysis
- Meeting end result specifications requires planning and communication



Who's responsibility is it?

- Paver Speed?
 - Paver operator?
- Truck spacing
 - Truck boss, Foreman?
- Roller Speed?
 - Roller operator?
 - Quality Control?

Meeting Density & Smoothness targets?

– Quality Control?

Plan for Excellent Compaction!

- Set paver speed
- Set target density
- Set roller speed to paver
- Do a Test Strip
- Check, check, check...
- Work as a TEAM!

Foreman Superintendent DOT Inspector Truck Boss Project Manager Quality Control

Thank-you for your attention.

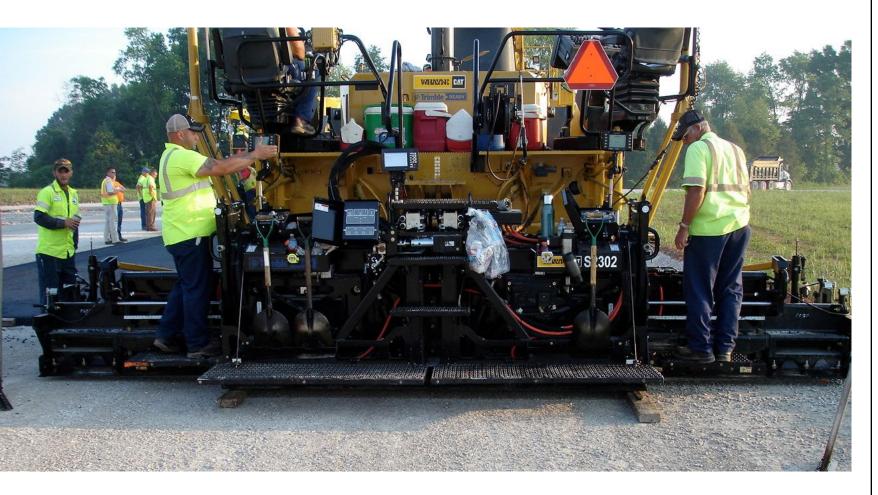
© 2024 Caterpillar All Rights Reserved Materials and specifications are subject to change without notice. Featured machines in photography may include additional equipment for special applications. CAT, CATERPILLAR, BUILT FOR IT, their respective logos, "Caterpillar Yellow," and the POWER EDGE trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

FOLEY EQUIPMENT

Paving by the Numbers

Taking off: Is this a good place to start?

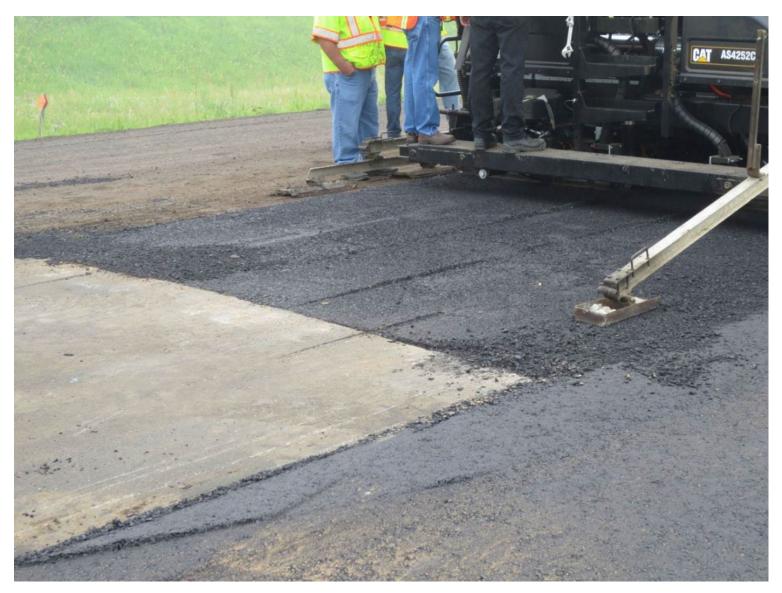
Good Starting Point



- Cut straight starting joint
- Butt joint flat

- Tack butt joint
- Clean area where screed will set down

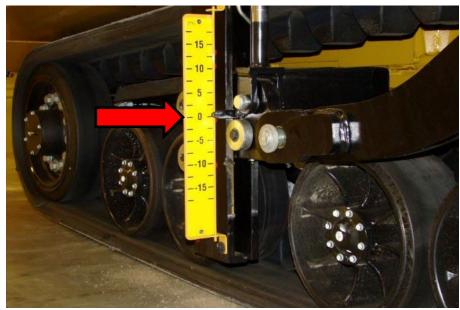
Set Down & Take Off


PAVING BY THE NUMBERS

- 1. Heat the screed
- 2. Set the tow points
- 3. Set paving width
- 4. Set crown
- 5. Set extender height
- 6. Set extender slope
- 7. Lower screed and remove slack
- 8. Null the screed
- 9. Position end gates
- 10. Set auger height
- 11. Position feeder sensors
- 12. Set feeder controls
- 13. Fill auger chamber/place in auto
- 14. Set accessory functions
- 15. Pull off starting reference

QEXQ1403-04 (Replaces QEXQ1403-03) © Caterpillar 2014 All rights reserved.

Heat the Screed – Step 1

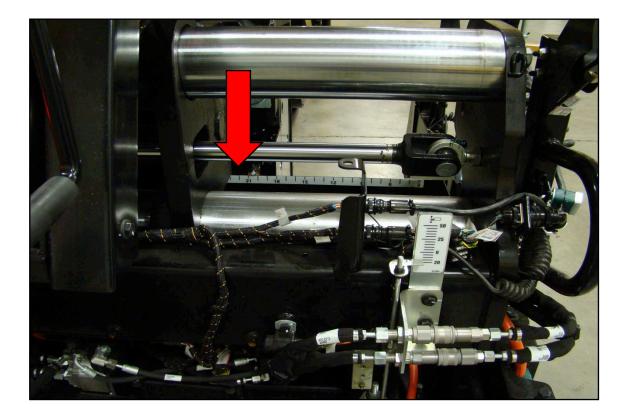


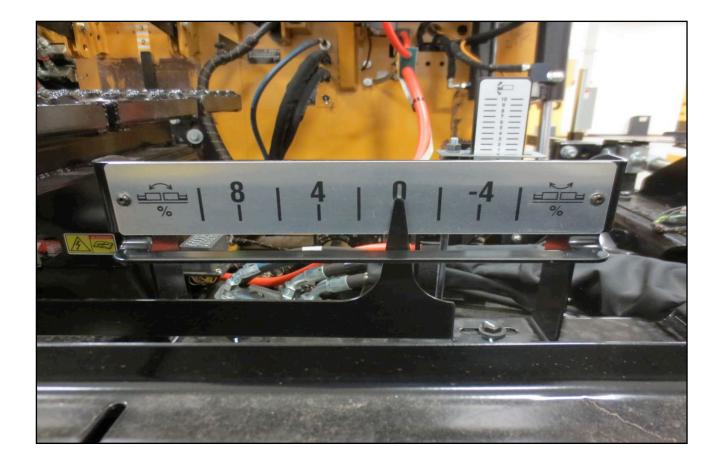
- Mix sticks to cold screed plate
- Creates very open texture
- Screed drops
- Pick up, heat screed and re-start OR
- Repair low spot while screed rests on hot mat to warm up.

Set Tow Points – Step 2

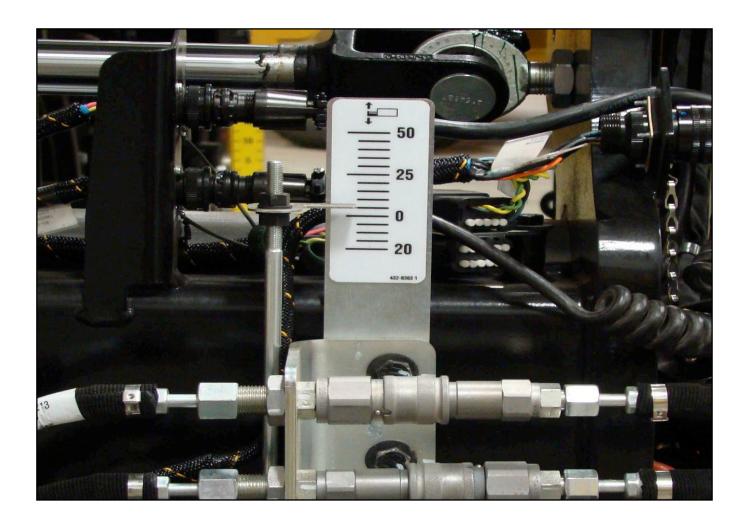
- Based on uncompacted mat thickness
- Establish a straight "line of pull"
- Set tow points <u>BEFORE</u> lowering the screed

Example: 2 ¹/₂ inch mat (rear-mount)


- Tow point scales are different
- Know where "0" is on your paver
- Establish a straight line of pull

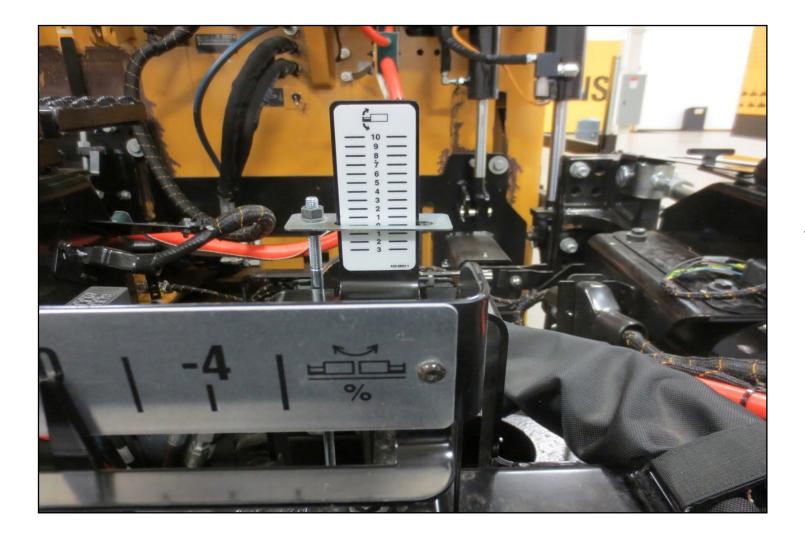

Tow Point set at 2 ¹/₂

Set Paving Width – Step 3

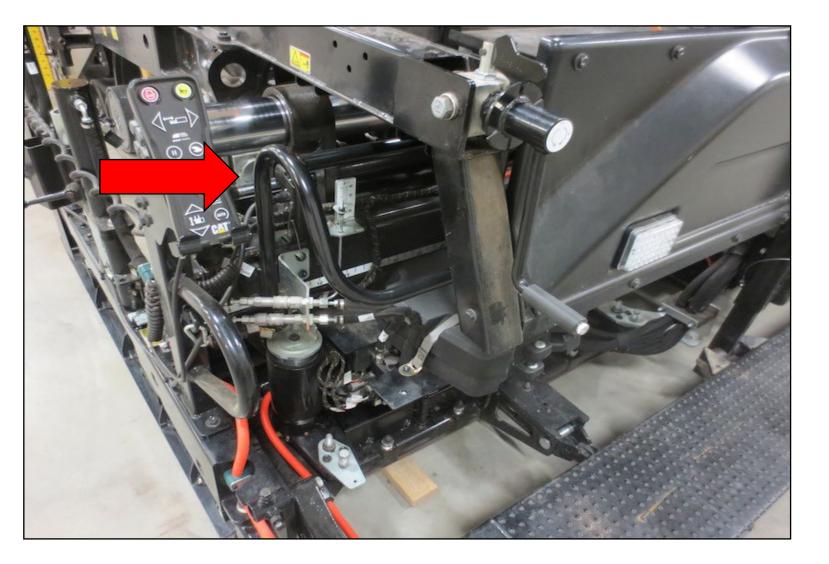

- ✓ Set Paving width
 - Based on the main screed width, set extender width per job specs
 - □ Use scales on extenders
 - Equal extender width on both sides whenever possible

Set Screed Crown – Step 4

✓ Set Main Screed Crown per job specs


Set Extender Height – Step 5

✓ Set Extender height – will set the angle of attack

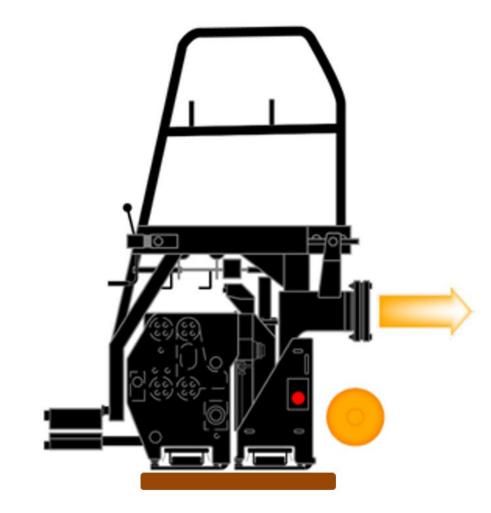

\Box ¹/₄" above

Set Extender Slope – Step 6

✓ Set Extender Slope per job specs

Prepare Screed – Step 7

Prepare Screed

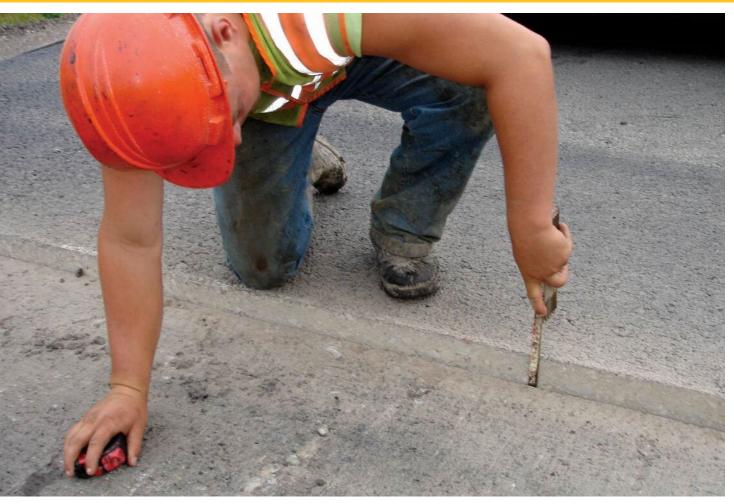

- \checkmark Raise the end gates
- Select starting reference that is the proper thickness and length
- ✓ 0.9 1.2 m (3 4 ft.) and position under extender pivot
- ✓ Support main screed and extender screed

Build a Pad or use Starter Boards

- Support full length of screed & extensions
- 3 to 4 feet long boards
- Based on uncompacted mat thickness (1/4" per 1")

Boards must support main & extenders

Full Support Main & Extenders

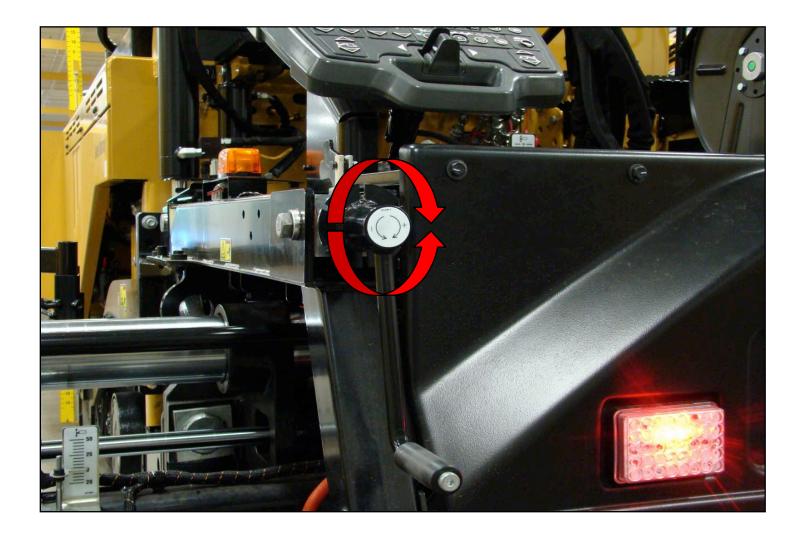

Screed will drop or 'nose over'

What's wrong with this take-off?

No starter boards!

Measure Height of Starting Joint

- Calculate thickness of starter boards
- General rule vibratory screed: ¼" compaction per 1" loose depth
- Example: Place 2-¹/₂" loose to end up with 2" after rolling

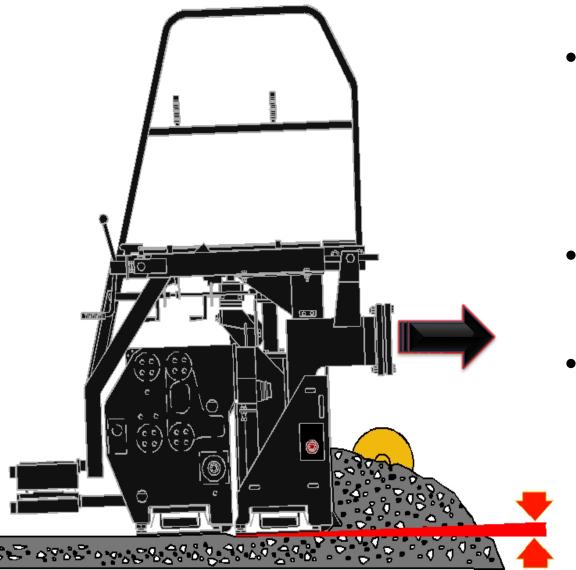


Lower the Screed & Remove Slack – Step 7

- Lower screed onto starting boards in "float" position
- Take out the slack
- This "sets" the angle of attack at 1⁄4" (or whatever extender height was set at) when we null the screed

Null the Screed – Step 8

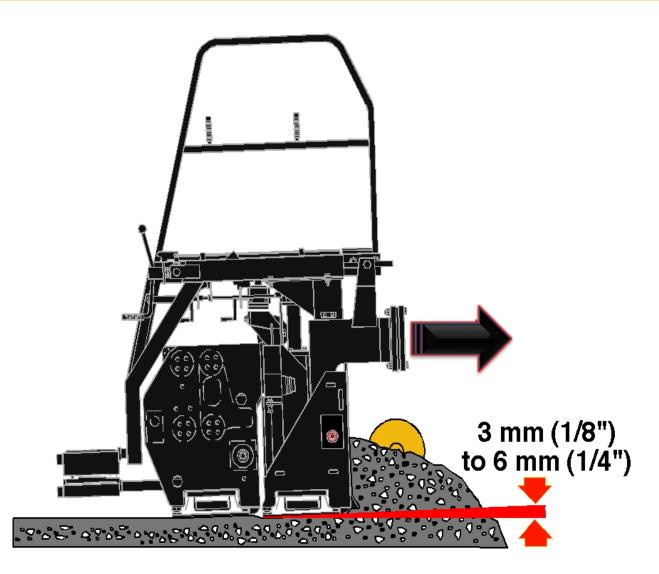
Null the Screed


- ✓ Null one side at a time
- ✓ Turn one depth control crank until no resistance is felt
- ✓ Repeat for the other depth control crank
- ✓ Check the first side again

Null the Screed - must be "free floating"

- Nulling the screed removes all the tension in the screed
- Use depth screws on each side until no resistance is felt
- The screed must be "free-floating" on the mix

Angle of Attack

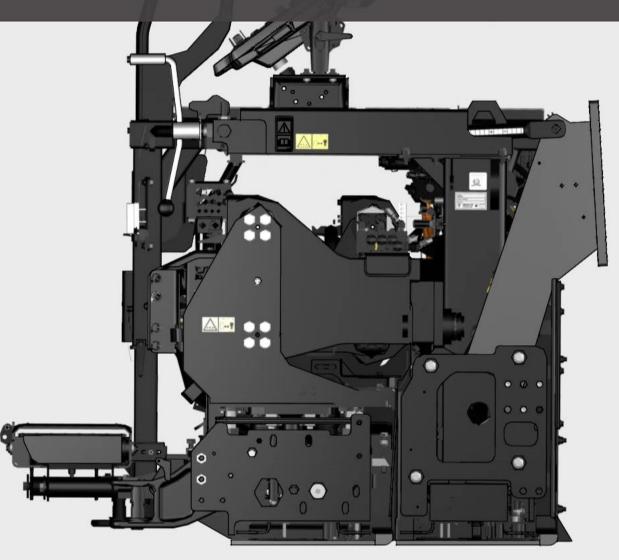


 Angle of attack is the relationship between the nose of the screed & the trailing edge of the screed

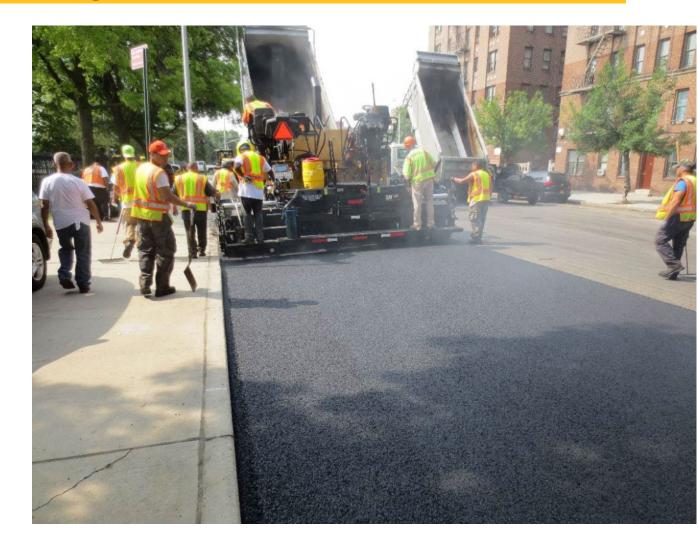
Nose up attitude

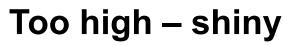
Screed reaches equilibrium

Angle of Attack



• Normally 1/8" to 1/4"


 Angle too high, screed compacting with trailing edge


- Erratic screed behavior
- Angle too low increases shear factor and wear

ESTABLISH EXTENDER HEIGHT

Angle of attack – what you see...

Too low – open texture

Position the end gates – Step 9

Position End Gates per job requirements

- Manual End Gates lower to contact grade, apply
 2.54 cm (1 in) spring tension
- ✓ Hydraulic Powered End Gates lower to grade, Press Auto

Set the Auger Height – Step 10

Set Auger Height

- ✓ Auger height affects mat texture
- Auger height of 5 cm
 (2 in) above the mat is right for most mixes
- ✓ Fine tune according to mix

Position Feed Sensors – Step 11

Position Feeder Sensors □ Sonic feed sensors

- ✓ Perpendicular to the live material flow.
- ✓ 46 cm (18 in) away from the material
- ✓ Target moving material

Set Feeder Controls – Step 12

Set Feeder Controls

- ✓ Adjust Conveyor Control Dials to 40%
- ✓ Adjust mix height to 60% using arrows
- ✓ Select OK after adjusting

Manually Fill Auger Chamber – Step 13

Manually Fill Auger Chamber

- ✓ Machine low idle
- Manually auger material across screed face
- ✓ Auger material out to establish
 ¹/₂ level
- ✓ Do not overfill

Manually Fill Auger Chamber – Step 14

Set Accessory Functions

- ✓ Set grade controls to specifications
- ✓ Set slope control to specifications

Pull Off Starting Boards Quickly – Step 15

- Quickly get to paving speed
- Check mix feed
- Check auger speed
- Check for lines in mat

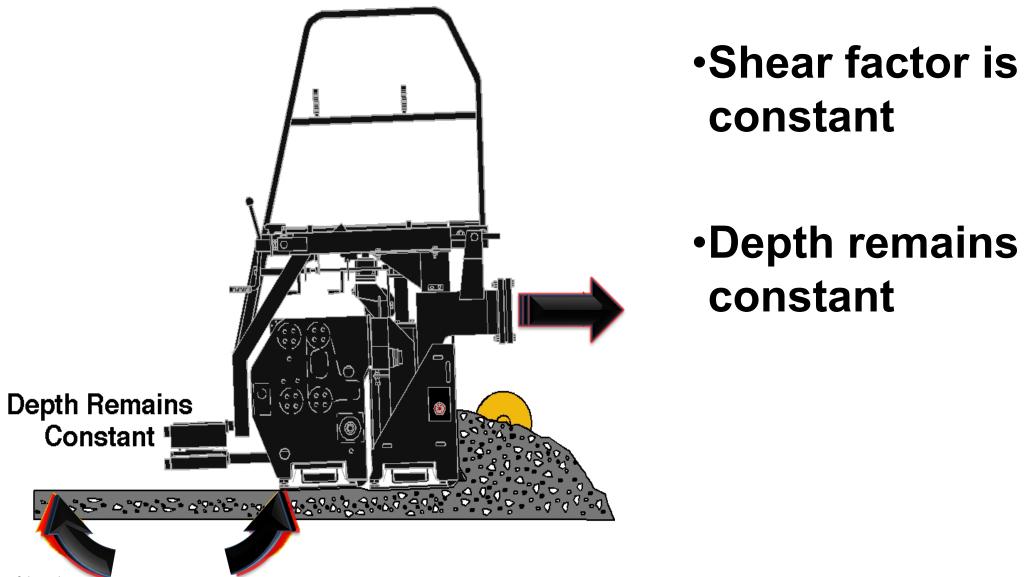
Separation Marks – Extension Low

- Lined up with inner edge of screed extension, extension too low
- Raise extension to erase
 line
- If line re-appears behind outer edge of main screed, use extension slope switch to erase line

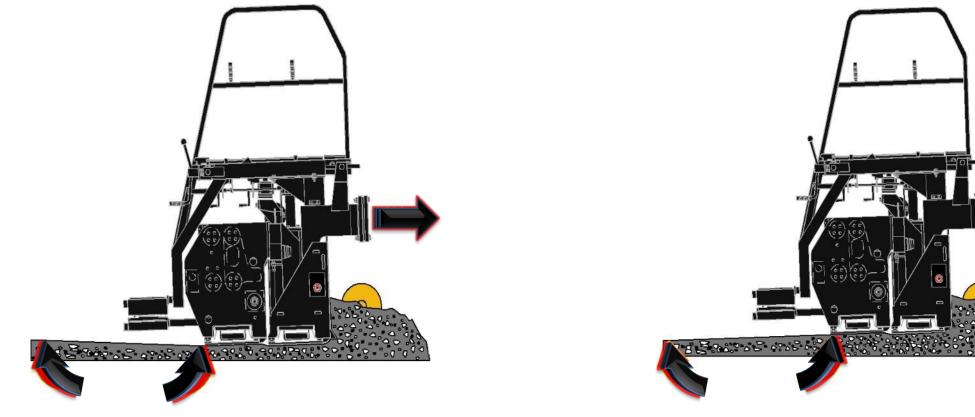
The Result: Straightedge tells the story

Paver Speed

- Goal is non-stop paving
- Set to match mix delivery
- Balance with rollers
- Quick starts/stops
- 60 fpm maximum


Why Continuous Paving?

- Screed settlement during long stop
- Compaction process may clean up mark
- Screed assist can help



Paver Speed Constant = Smoothness

FA

Changes in Paver Speed

Increased Speed

- Shear factor decreases
- Depth decreases

- **Decreased Speed**
- Shear factor increases
- Depth increases

Thank-you for your attention!

© 2024 Caterpillar All Rights Reserved Materials and specifications are subject to change without notice. Featured machines in photography may include additional equipment for special applications. CAT, CATERPILLAR, BUILT FOR IT, their respective logos, "Caterpillar Yellow," and the POWER EDGE trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

Achieving Smoothness

Smoothness in a Municipal Setting

- 1. Continuous paving
- 2. Managing truck exchange
- 3. Automatic grade & slope control setup
- 4. Job layout
- **5.** Compaction

Setup Before Paving Starts

PAVING BY THE NUMBERS

- 1. Heat the screed
- 2. Set the tow points
- 3. Set paving width
- 4. Set crown
- 5. Set extender height
- 6. Set extender slope
- 7. Lower screed and remove slack
- 8. Null the screed
- 9. Position end gates
- 10. Set auger height
- 11. Position feeder sensors
- 12. Set feeder controls
- 13. Fill auger chamber/place in auto
- 14. Set accessory functions
- 15. Pull off starting reference

QEXQ1403-04 (Replaces QEXQ1403-03) © Caterpillar 2014 All rights reserved.

Continuous Paving

- MTVs can help
 - Windrow elevators
 - Re-mixing type

Approximately 15%
 improved smoothness

Paver Stops & Starts...

- Smoothness issue
 - Will it roll out?
- Non-uniform compaction
 - Temperature differentials
- Inefficient trucking?
- Stops > 6 min = bump

Paver Stops - density & smoothness

From hopper after stop 257.2

Sitting in auger chamber 241.3 Under screed plate 265.9

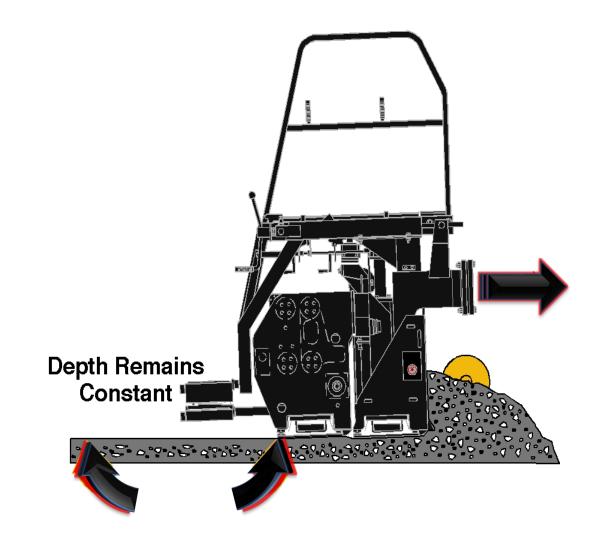
nder catwalk of screed

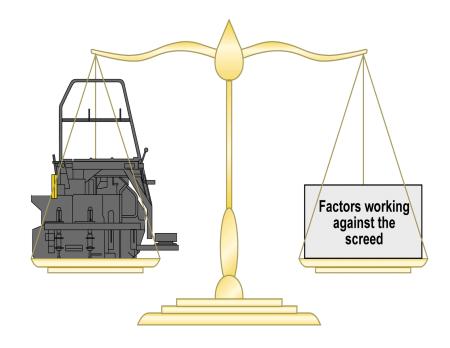
4425

From hopper after stop 257.2

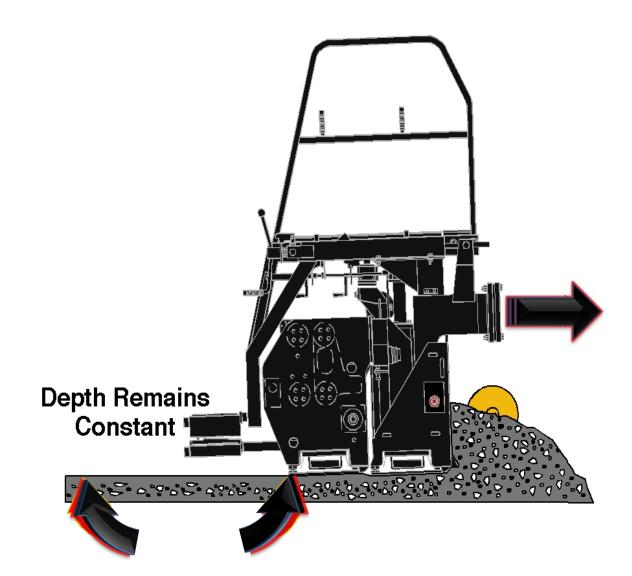
Sitting in auger chamber +241.3 Under screed plate +265.9

Under catwalk of screed 189.1


Planning a Balanced Paving Operation

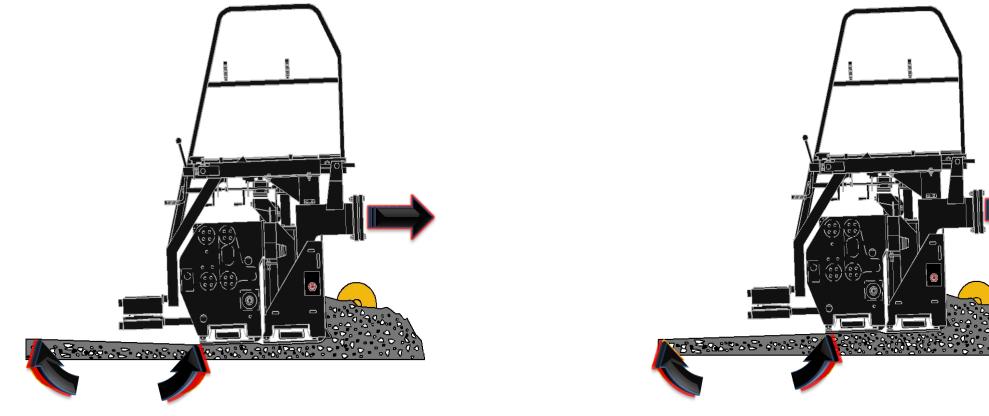

- Goal is non-stop paving
- Set to match mix delivery
- Balance with rollers
- Quick starts/stops
- 60 fpm maximum

Pavement Smoothness



Shear factor is constantDepth remains constant

Paver Speed Constant



Shear factor is constant

Depth remains constant

Changes in Paver Speed

Increased Speed

- Shear factor decreases
- Depth decreases

- **Decreased Speed**
- Shear factor increases
- Depth increases

Planning ≈ 20 minutes

Information Sories 120

s in Hot Mix

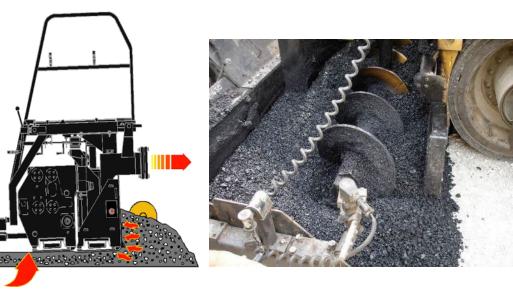
halt Operations

Pre- paving planning

- Tons per day
- Number of trucks needed
- Paver speed
- Roller speed
- Rolling Pattern
 - Density
 - Smoothness

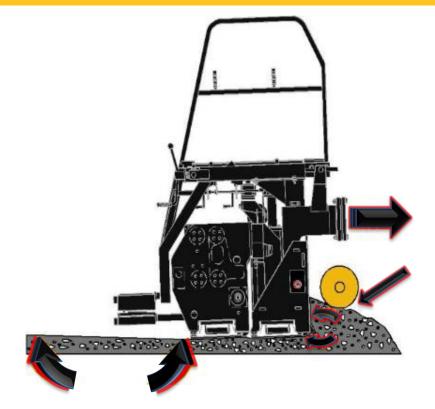
Tools available

- NAPA IS-120
- Paving Production Calculator App
- PaveCool App

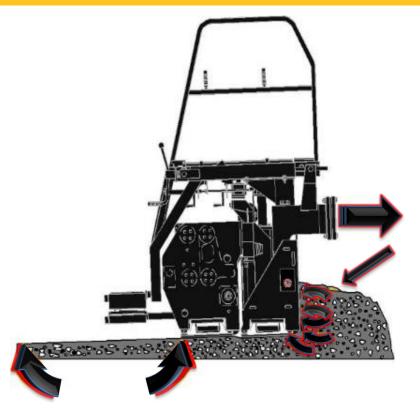


Managing Head of Material @ 1/2 Auger

85-95% of all mat defects are related to head of material!!


AVED SLZE I

- 1. Ratio dials (or flow gates)
- 2. Auger height
- 3. Feed sensor position
- 4. Auger speed



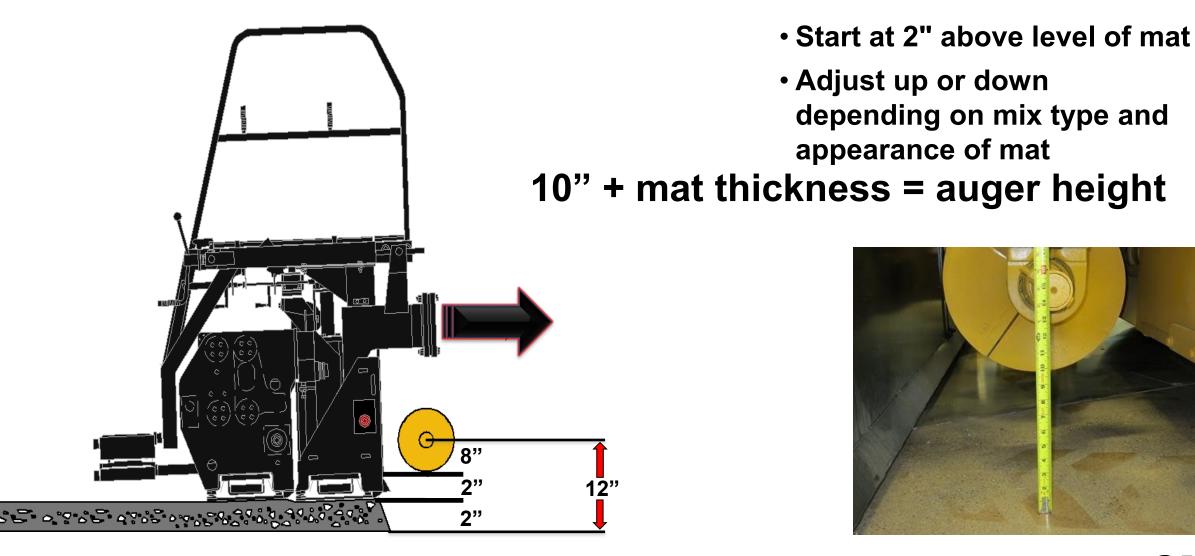
Changes in Head of Material

Head of Material Decreases

- Resistance decreased
- Depth decreases

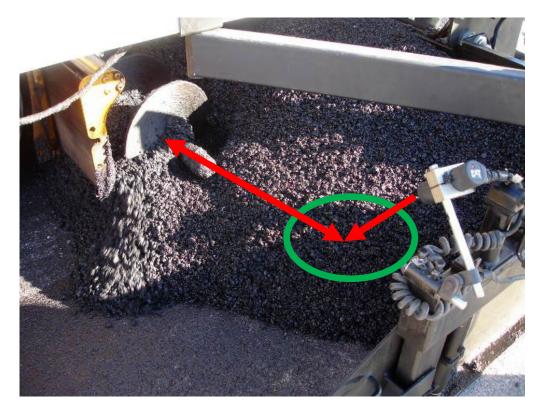
Head of Material Increases

- Resistance increased
- •Depth increases

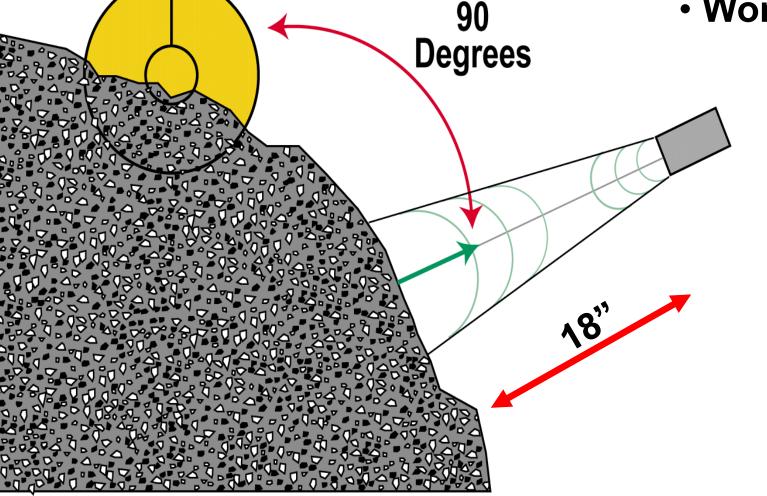

Controlling Head of Material: Mix Feed

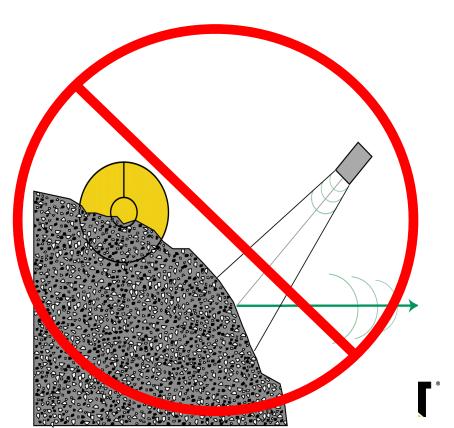
- Material level at center of auger chamber
- Material level in center area controls auger speed
- Flow gates on some pavers

Controlling Head of Material: Auger Height



Aiming Sonic Feed Sensors


- Mechanical or sonic
- Control level of material
- Position Sensor 18" from end of augers



Sonic Sensor Mounting Distance

- 18" from mix
 - 18" from last auger segment
 - Working range is 12" 32"

Paddle sensor at 18" and 45°

Controlling Head of Material: Auger Speed

- Auger speed uniform
- •20-40 rpm
- 2s per revolution
- •Auger speed too high or too low can cause stripes in the mat

Truck Exchange – HoM – Bumps & Dips

Keep Mix in the Hopper between trucks!

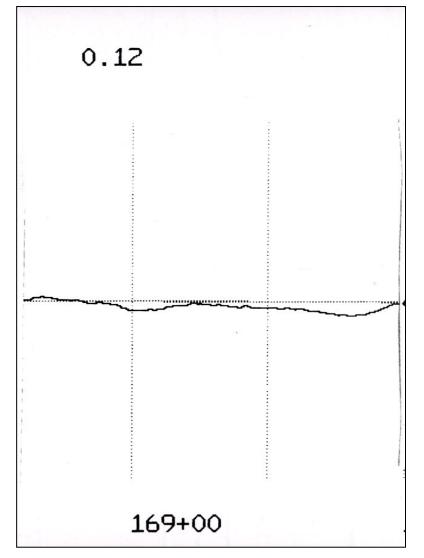
- Avoids bump/dip
- Minimizes segregation
- Holds heat in mix

Paver Speed - Real World Paving

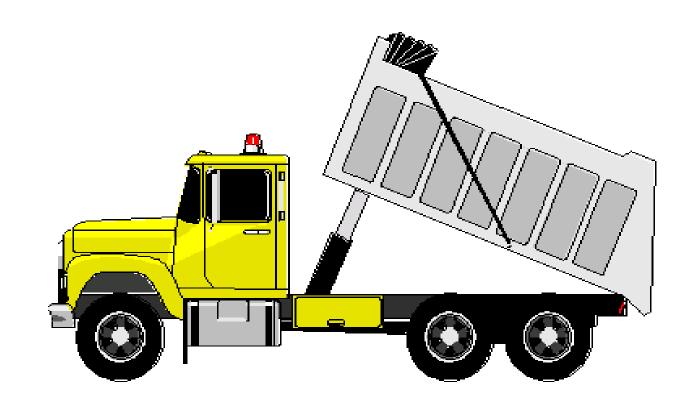
- Do not panic
- Stay with the plan
- Get rid of trucks in an orderly fashion
- Establish a uniform trucking pattern
- Will help density & smoothness

Caterpillar: Confidential Green

Changes in Paver Speed


 Changes in paving speed may require feeder system adjustments

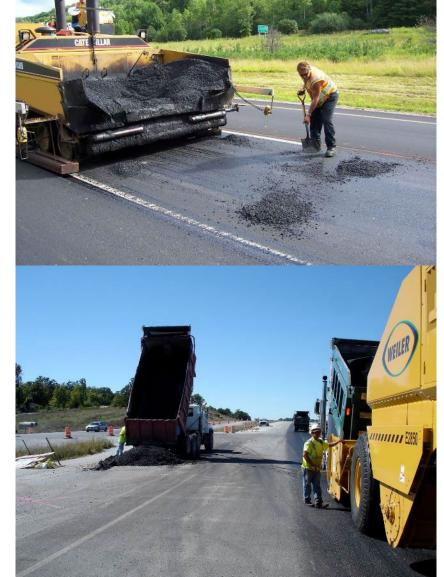
 Too often, paver speed changes, but feeder system ratio dials or flow gates are not adjusted to match new paver speed to maintain 20 -40 rpm auger speed


Quick Starts & Stops – Head of Material

Proper Truck Dumping

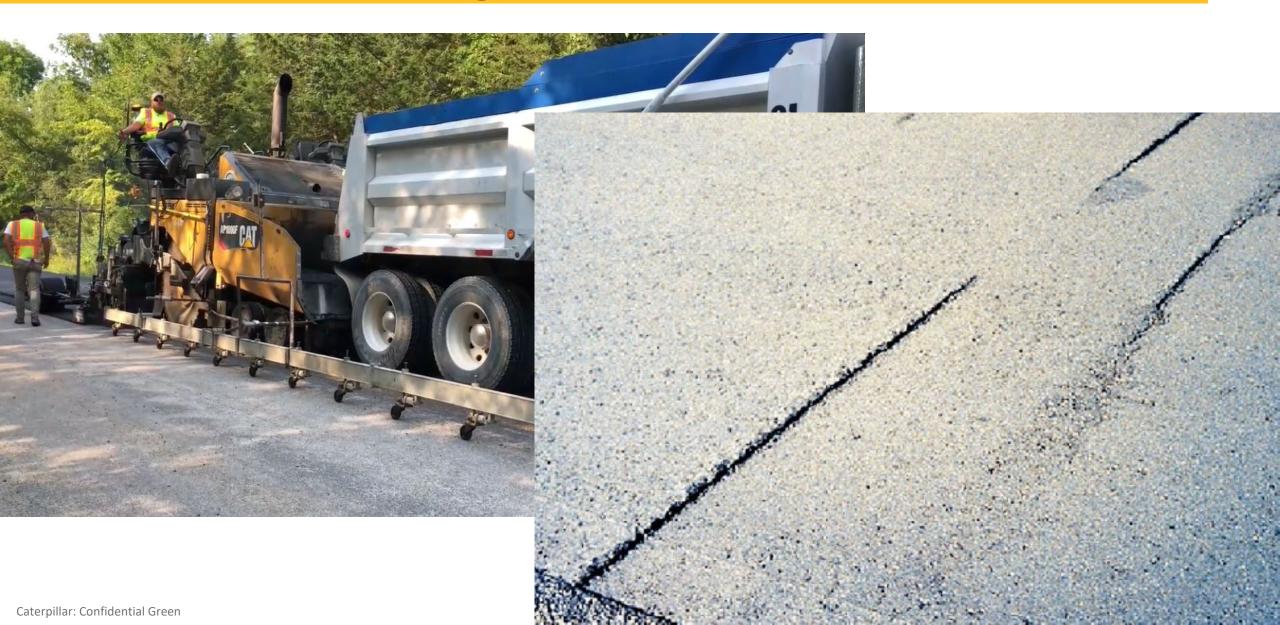
- Cover up
- Bed raised slightly
- Release tail gate
- Raise bed enough to dump mass of mix into hopper – not trickle mix into hopper

Managing Segregation – Truck Exchange



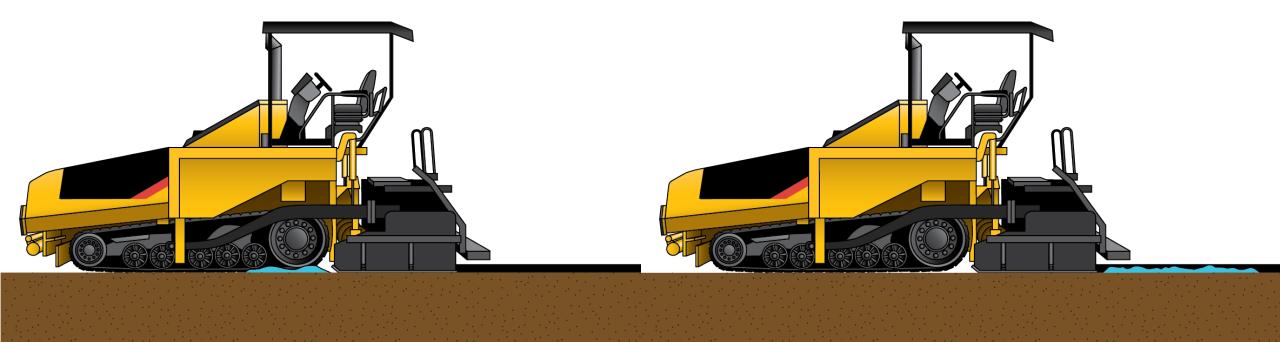
Caterpillar: Confidential Green

Defects Related to Truck Exchange



- Truck bumping paver
- Spills on grade
- Low hopper level

Trucks Bumping the Paver



Pave & Fold Hopper Wings

- Step three continue paving at normal speed
- Slowly fold hopper wings combining mix from sides with mix in middle

Spills on grade are BIG mistakes!

Spills on grade

Potholes

Density problem

Smoothness problem

Low Density

Existing

New AC

What is Grade & Slope?

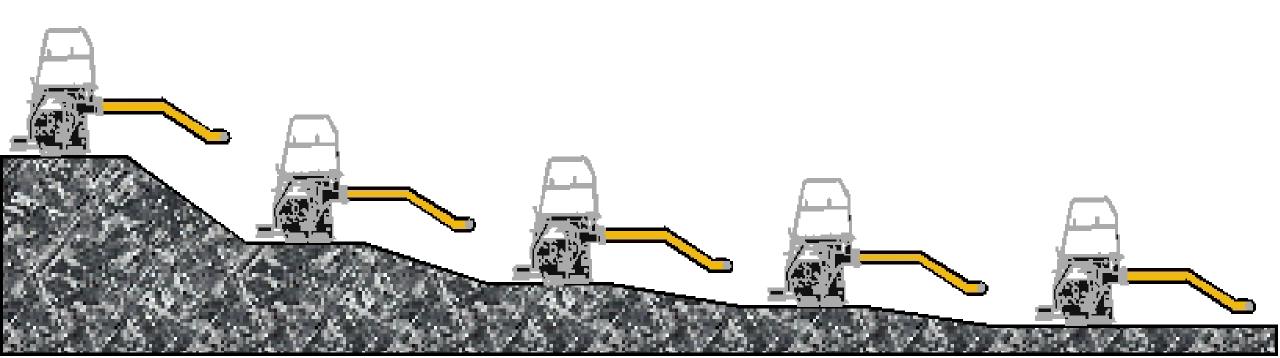
Grade (thickness)

Slope (% fall)

Caterpillar: Confidential Green

Change Thickness and Slope by Changing Angle of Attack

- Use depth control cranks or "screws"
- Use tow points



Change Over 5 Tow Arm Lengths

•65% of change occurs in the first tow arm length

•35% of change occurs over 4 tow arm lengths

Advantages of Automatic Grade & Slope Control

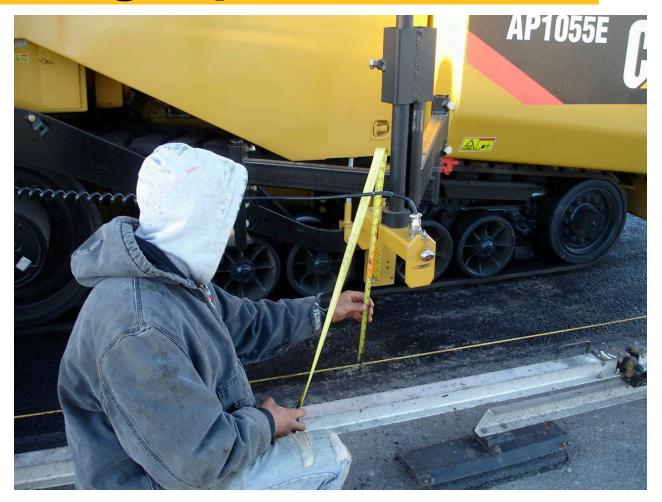
- Constant mat thickness
- Better yields/quantities
- Smoother roads
- Precise corrections
- Hands-off operation

Automatic Grade & Slope Components

Display Box(s) Control Box (computer)

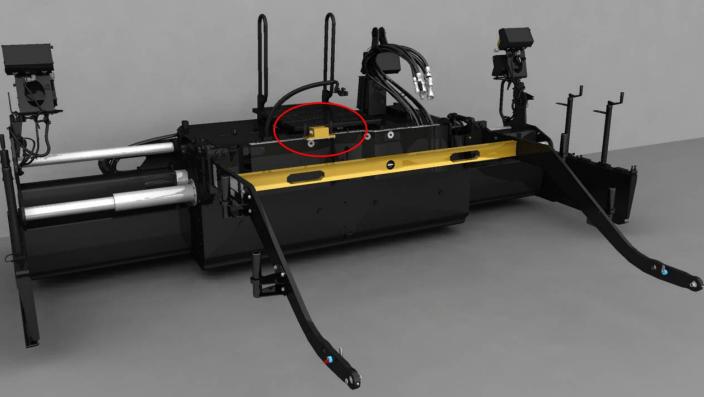
Slope Sensor (fixed)

Grade Sensors



Grade Control

Grade sensor is a moving tape measure



Reading distance to grade

Reading distance to string

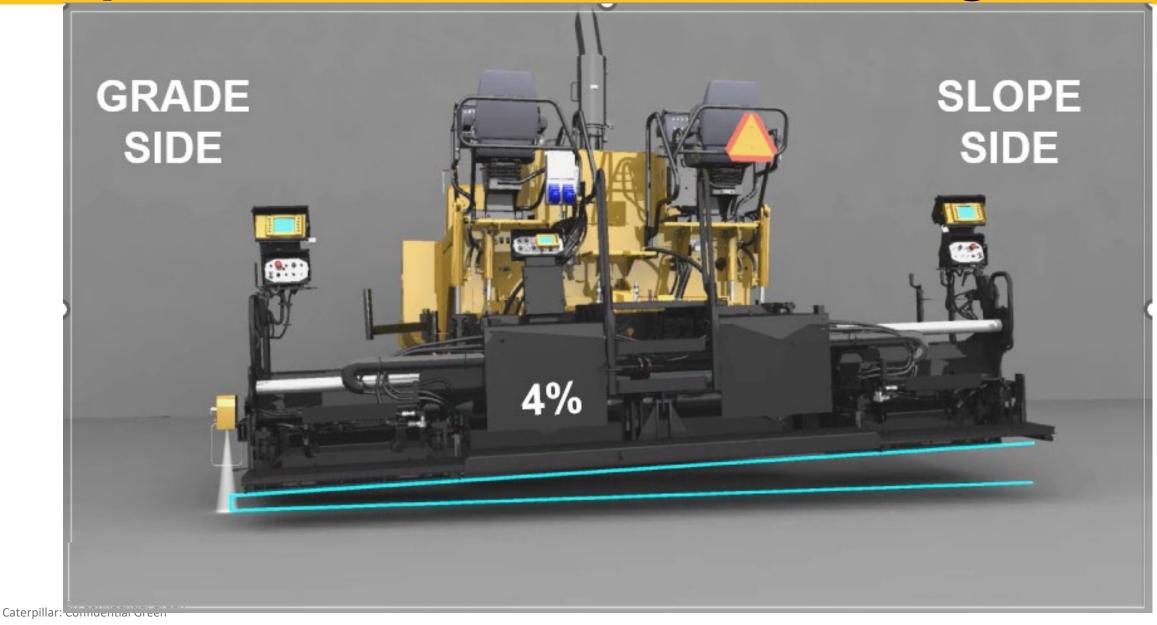
Caterpillar: Confidential Green

Slope Control

Slope box is like a carpenter's level

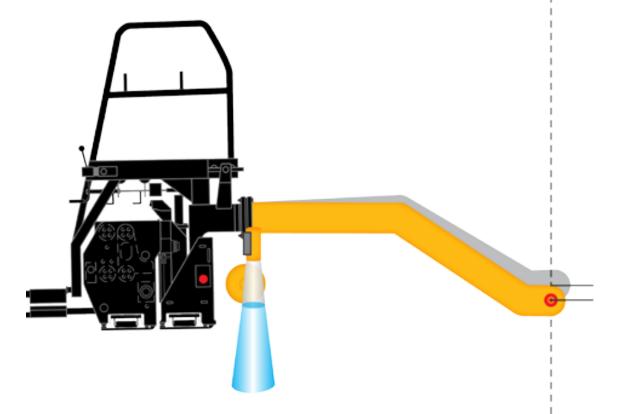
Caterpillar: Confidential Green

How Does Automatic Grade & Slope Work?


- Computer-controlled measurements
- Measurements several times/second
- Signals are sent to hydraulic cylinders to cause tow point movement
- Tow point movement results in mat thickness changes and/or slope changes

Grade Control Communication

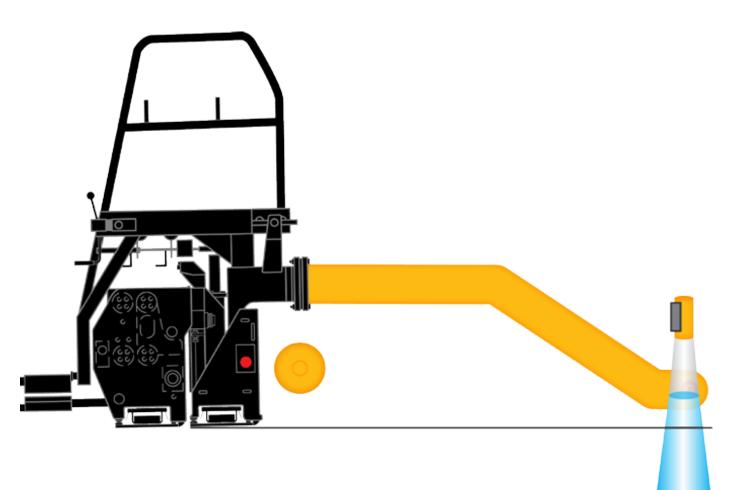
Caterpillar: Confidential Green


Slope FOLLOWS Grade Side Changes

Sensor Position for Joint Matching = Yield



- Sensor at auger for joint matching
- Follows existing grade no improvement
- Precise yield
- Fast reaction
- Tow point movement = 4x measured deviation, or 4:1


Caterpillar: Confidential Green

Joint Matching

Caterpillar: Confidential Green

Sensor Position for Smoothness ≠ Yield

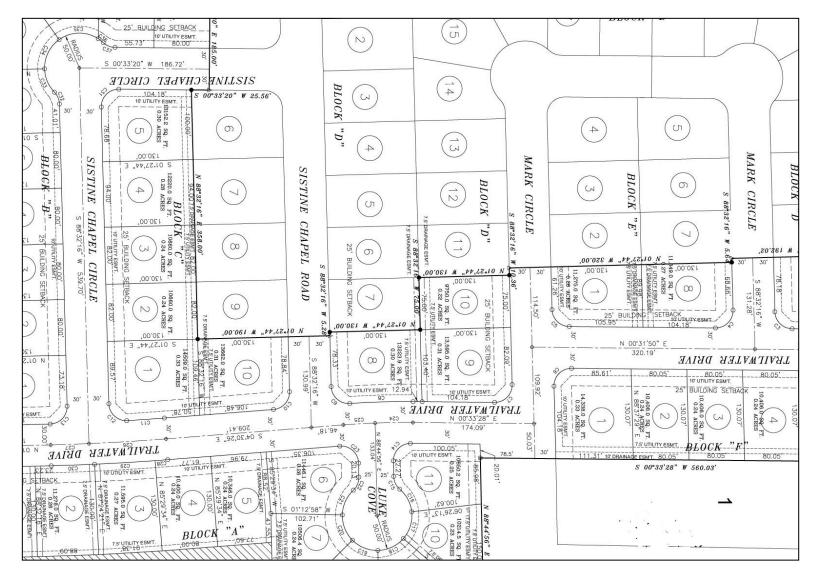
- Sensor at tow point for smoothness
- Slow reaction
- Fills in lows, smooths off high spots
- Difficult to control yield
- Tow point movement = 1x measured deviation, or 1:1
- Screed reacts over 5
 tow arm lengths

Sonic Averaging Ski

Finding a Good Reference

 Find a reference surface for automatic grade control

- Concrete curb?
- Existing grade?
- Setup stringline?
- Note: curb reference for single grade sensor at auger
- Placed to get exact thickness at the curb


Finding a Good Reference

- Could move grade sensor towards tow point for better smoothness
- Left side single sensor following other curb
- Base is well-graded here

Layout Subdivision

- Careful planning required
- Obstacles
- Reference for automatic grade control (if using)

Obstacles

Obstacles

- Multiple lifts may require extra handwork around obstacles
- Raising the end gate to clear the obstacle may help reduce handwork

How Compaction Affects Smoothness

- Roller stops at an angle to the mat
- Roller stop in cold area of the mat, or off the mat
- Cross-roll transverse joints
- Don't get 'trapped' by paving sequence!

Thank-you for your attention!

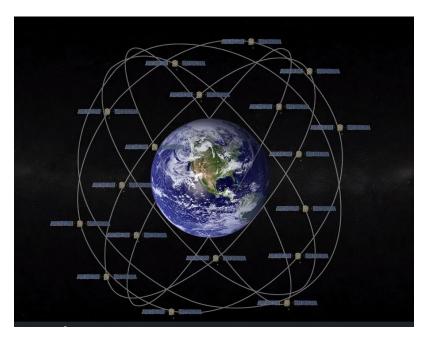
PM620

© 2022 Caterpillar All Rights Reserved Materials and specifications are subject to change without notice. Featured machines in photography may include additional equipment for special applications. CAT, CATERPILLAR, BUILT FOR IT, their respective logos, "Caterpillar Yellow," and the POWER EDGE trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

GPS & Intelligent Paving

MoDOT Black to Basics Spring Training 2024

Presented By: Connor Kennedy, Accounts Manager – Paving Technologies


Ozark Laser & Shoring

What is GPS?

- NAVSTAR = GPS (Global Positioning System)
- Global Navigation Satellite System (GNSS)
 - GLONASS = Russian Positioning System
 - BeiDou = Chinese Positioning System
 - Galileo = European Union Satellite System

How Does It Work?

Real Time Kinematic (RTK)

Method of correction where a static base station(s) within a general area of the rover can gather, compute and relay correction data of the exact same satellites the rover is reading

✤Brings accuracy to higher levels (+/- ½")

Requires communication from base station to rover

RTK Network – Requires cellular signal to transmit correction data

✤ Base & Rover – Requires UHF or 915 radio frequency to transmit correction data

Post Processed Differential GNSS

Two or more static base stations collecting data simultaneously over a defined course of time
 Due to being static for a long period of time, we can get positional accuracy within 1/8" or less
 Can be collected by placing multiple static base stations on the job site, or from multiple reference stations (Network)

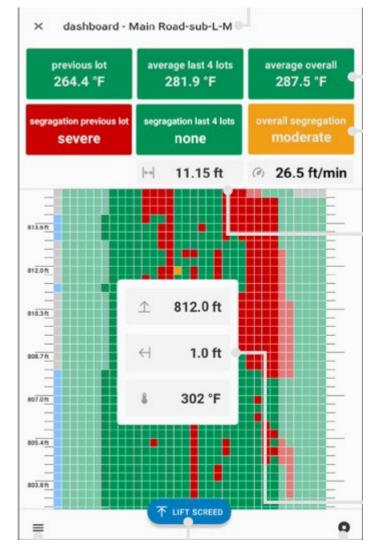
Must be calculated on software that can post process GNSS data from multiple base stations over a designated amount of time

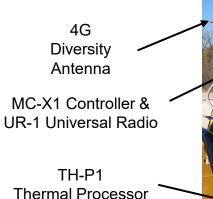
Intelligent Compaction

Compaction and Tracking System

- Accurate pass count display
- Secure connectivity to Sitelink3D services
- Synchronized mapping with customized reporting
- Meets FHWA intelligent compaction standards
- Ruggedized temperature and accelerometer sensors

Accelerometer


GNSS, Radio and Cellular Receiver


IR Temperature Sensor (Front & Rear)

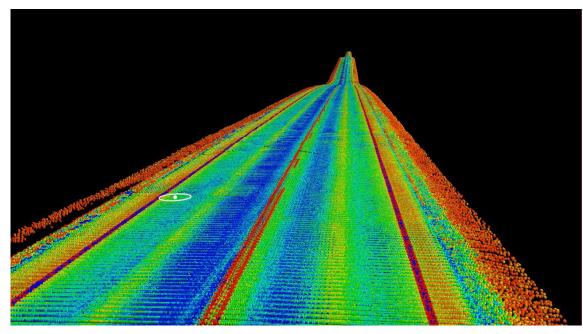
Thermal Mapping

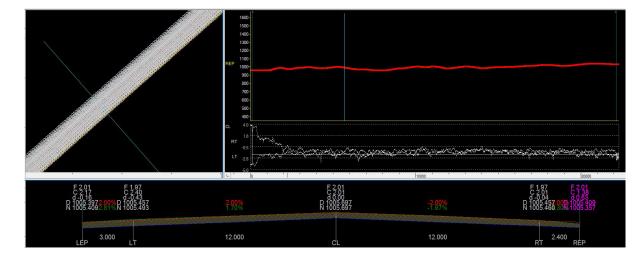
- Paver Universal
- Can be installed/swapped in +/- 30 min
- No rolling calibration due to onboard RTK functionality
- Contained on one mount
- ✤ Network, UHF & 915 Capable

FC-6000A Data Collector TH-C1

Thermal

Camera

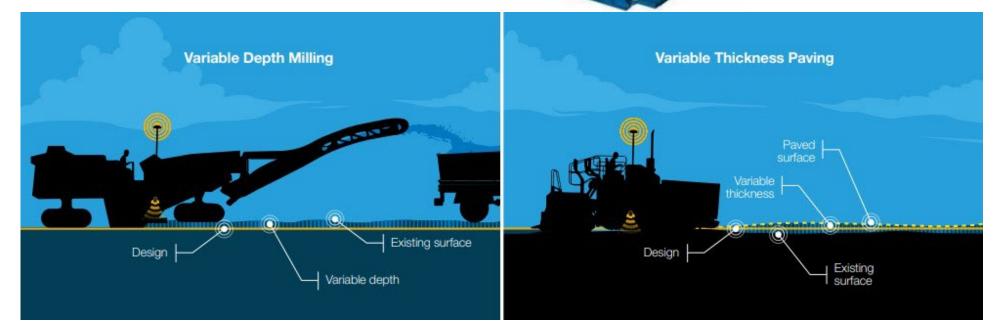

GR-i3F GNSS


Antenna

LiDAR Road Scanning

- Scan in open traffic at highway speeds
- ☆ Can easily reach 1/8" accuracy when tied to ground control
- * Universal hitch receiver, can be mounted and ready to scan in an hour or less

Magnet Office Construction with Resurfacing



Magnet Collage Cloud Processing

SmoothRide Milling & Paving

- ☆ Virtual Ski cuts design time in half
- ☆ Accurate material quantities and tracking
- ☆ Takes guess work out of headers and joints
- ☆ Reduced need for ground and screed personell

Cloud & Application Services

- Daily Production and Machine reporting
- Remote Support Desk

- Estimate, design, and plan
- Resurfacing module makes match constraints easy

Our Team

Eddie Brown, Vice-President – Construction Technologies
Email: ebrown@ozarklaser.com

Connor Kennedy, Accounts Manager – Paving Technologies
Email: ckennedy@ozarklaser.com Phone: 417-839-4246

Price Bowles, Professional Services – Paving Technologies
 Email: pbowles@ozarklaser.com
 Phone: 417-880-7024

Kary Harshbarger, Professional Services – Magnet/Survey/Paving
Email: kharshbarger@ozarklaser.com
Phone: 913-788-0535

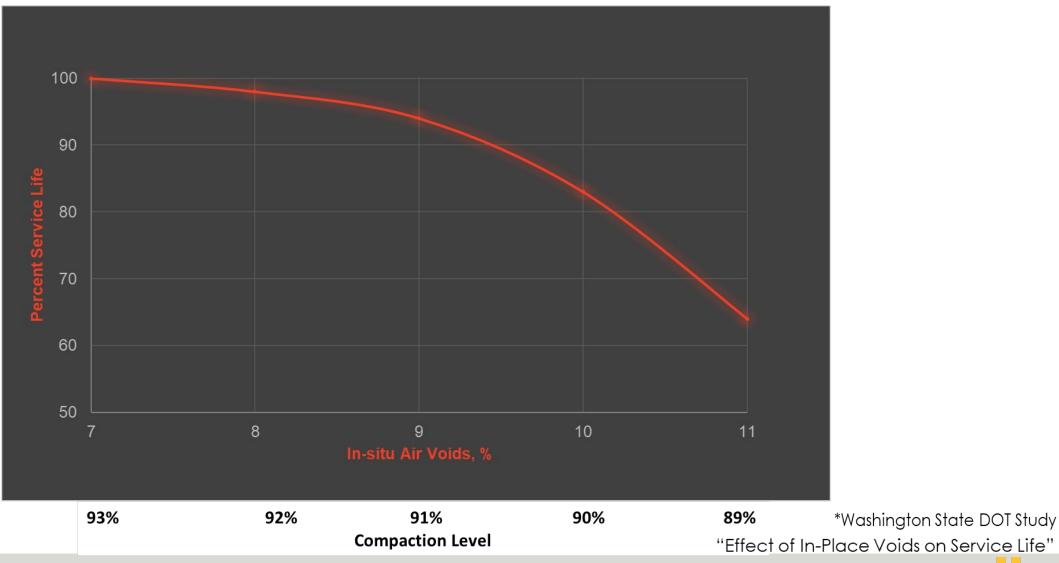
Leading Edge Technology in **GEOPOSITIONING**

Constructing Quality Longitudinal and Tr ansverse Joints

2024 MAPA: Black to Basics 2/7/2024 Jim Cunningham & Cullen Hesterberg

Asphalt Materials, Inc.

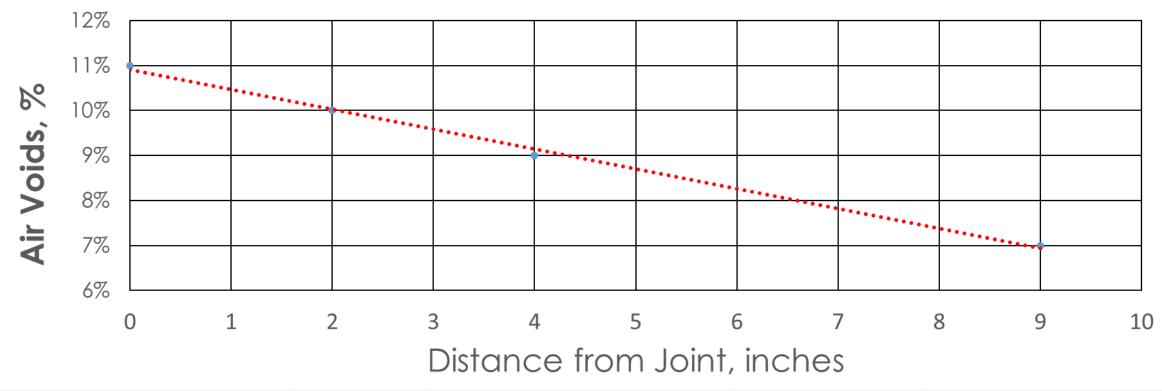
How difficult is it to find pavements like these?



Black to Basics 2024

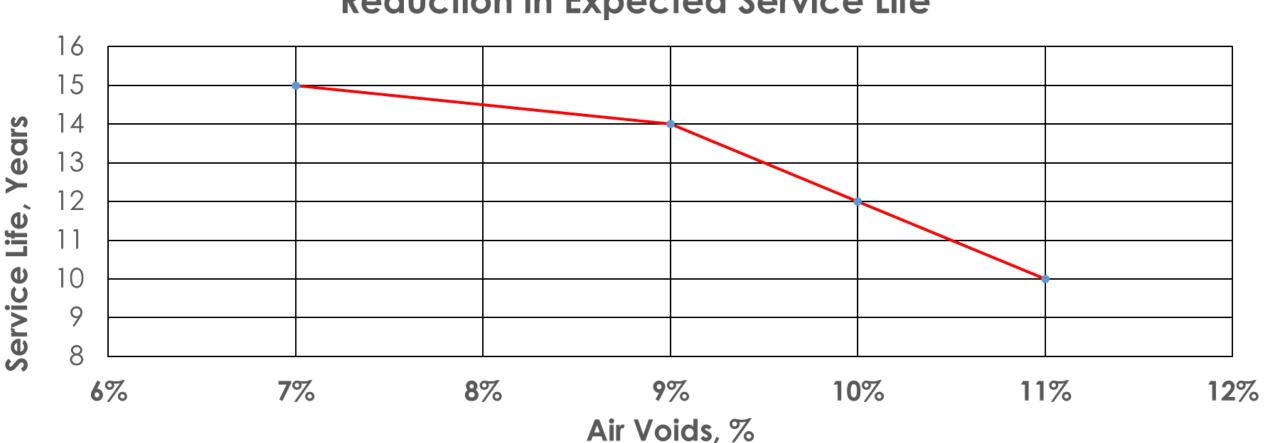
Why do joints fail early?

Longitudinal Construction Joints



- Issues
 - Cannot achieve the same density at the joint as in the mat
 - Water and air intrusion accelerates damage
 - Longitudinal construction joints
 - Commonly, the first area requiring maintenance on a pavement

Air Voids from Joint Towards Center of Lane


Air Voids from Unconfined Centerline Joint

Centerline going towards interior of mat

Effect of Air Voids on Pavement Service Life

Reduction in Expected Service Life

If the center of the mat is at 7% voids or less, but the joint is at 11% voids, the joint fails 5 years earlier than the rest of the pavement.

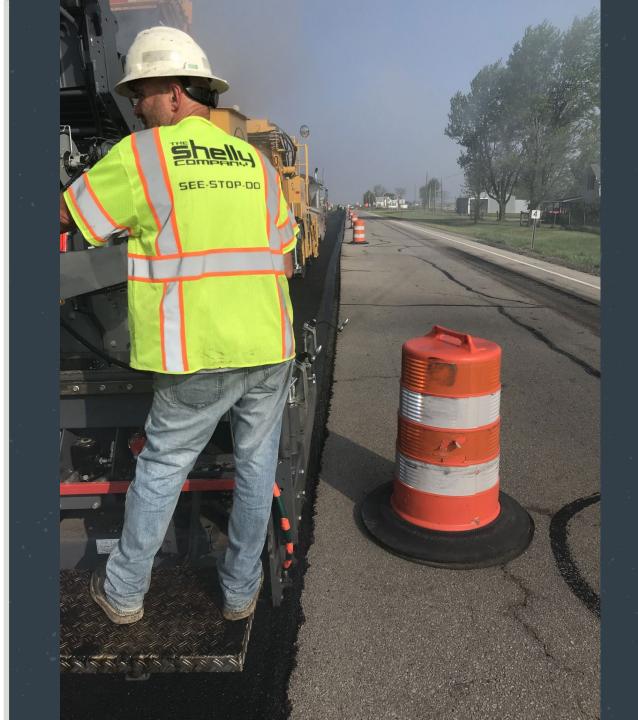
Longitudinal Construction Joints Historical Methods

- Mechanical Methods to Improve Joint Performance
 - Joint density requirements (typically target voids at 4" from joint to within 2% of center mat voids
 - Echelon paving (hot joint)
 - Mill and inlay (confined joint)
 - Notched wedge joint
 - Cutting wheel
 - Joint Heaters

Asphalt Materials, Inc.

Full Width Paving

Echelon Paving



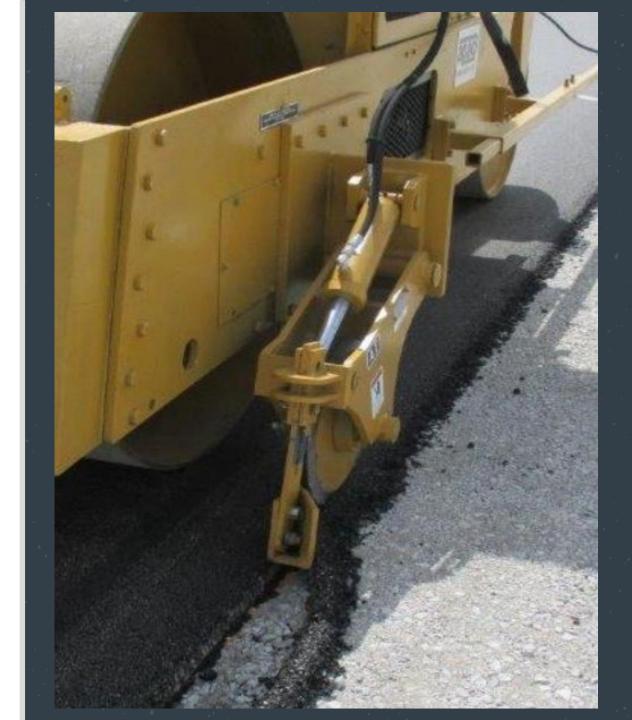
Asphalt Materials, Inc.

Mill & Inlay

Pave wide/mill back

Notched Wedge Paving

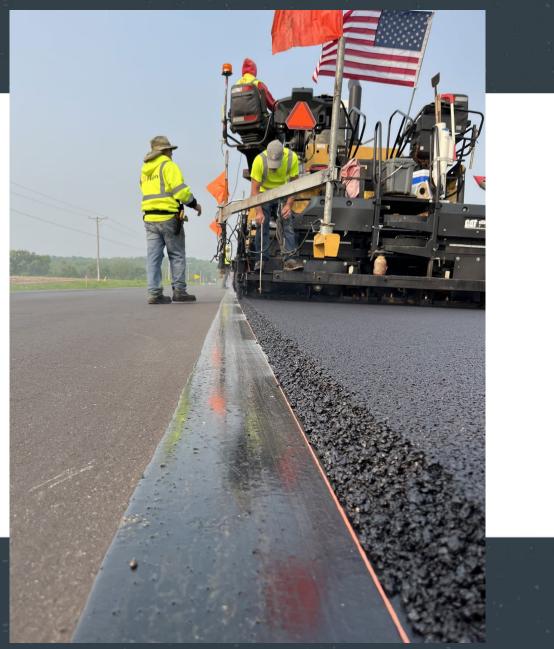
Notched Wedge Paving

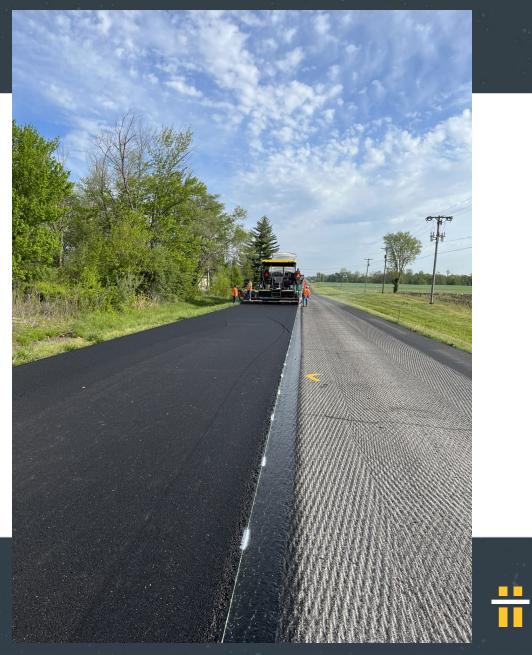


Asphalt Materials, Inc.

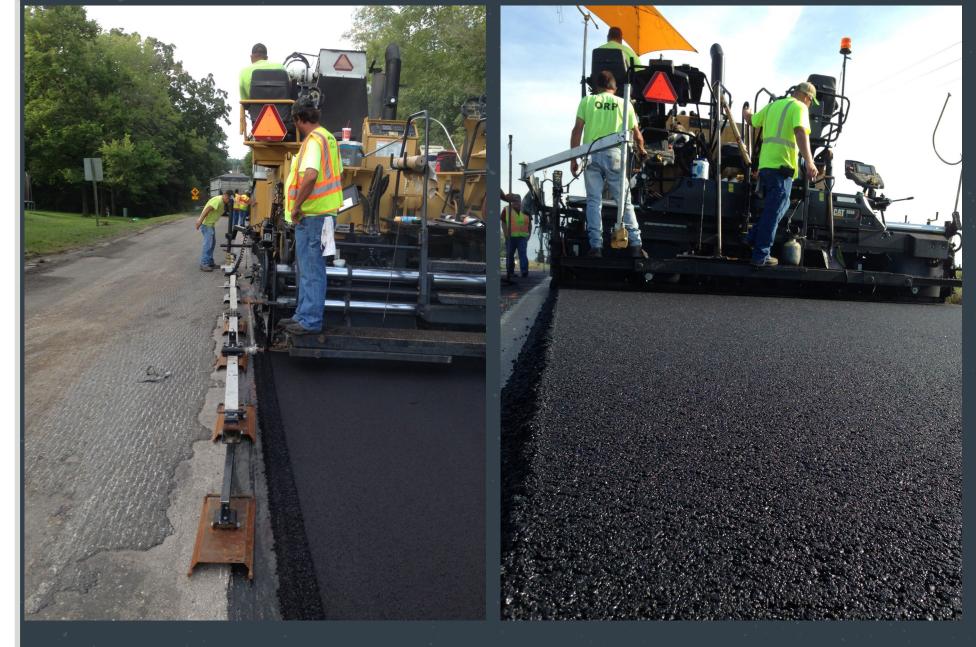
Cutting Wheel

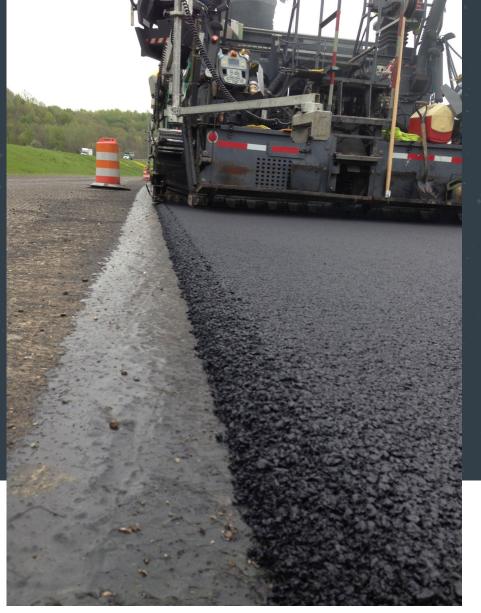
Joint Heater



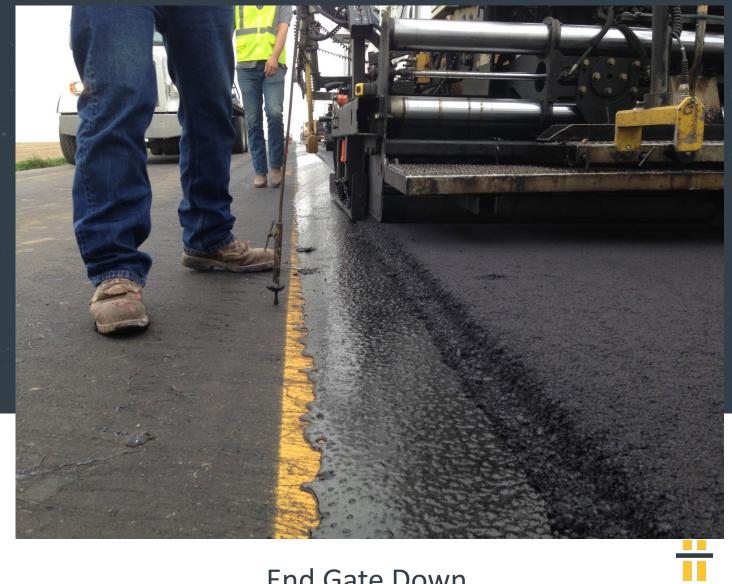

Daily Production Example

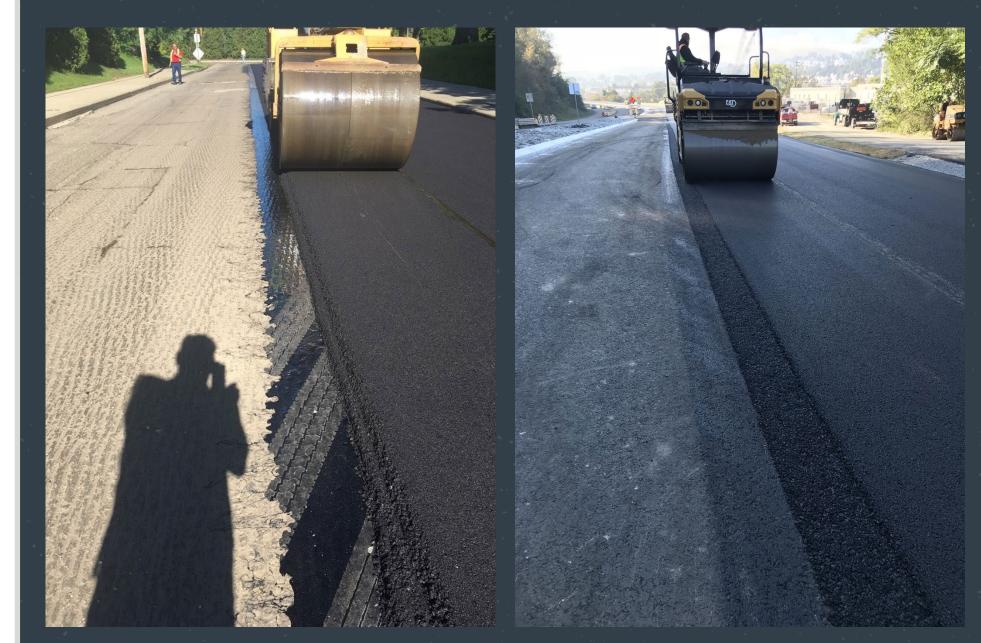
- 3 miles at 12 feet wide
- 1.50" Surface Course = 1,800 ton
- 1,800 ton in 9 hours = 200 ton per hour
- 200 ton per hour = 30 feet per minute
- PLANNING, PREPERATION, PERFORMANCE


Stringline



Contact Ski


Non-Contact Ski


End Gate Up

End Gate Down

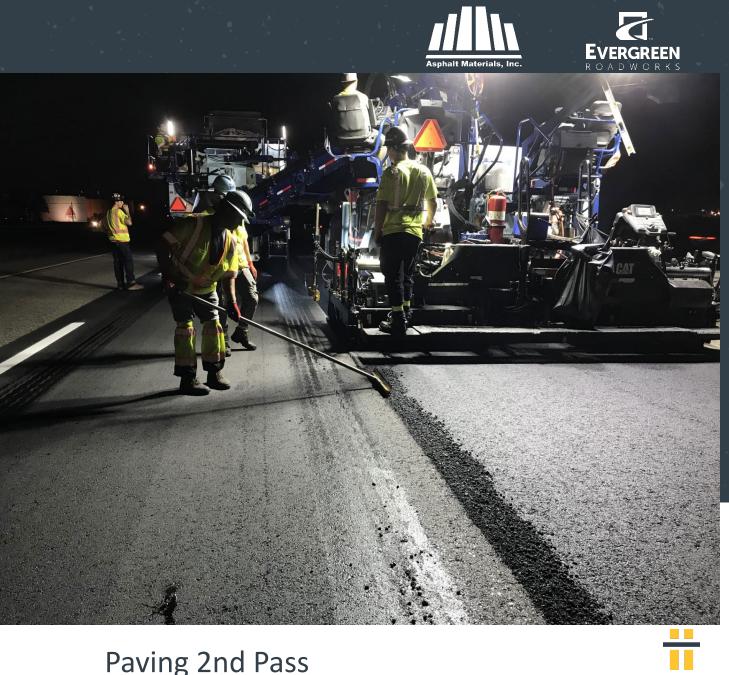
Asphalt Materials, Inc.

1st Roller Pass Overhang Joint

Finish Roll Notched Wedge

Rolling Patterns

Echelon



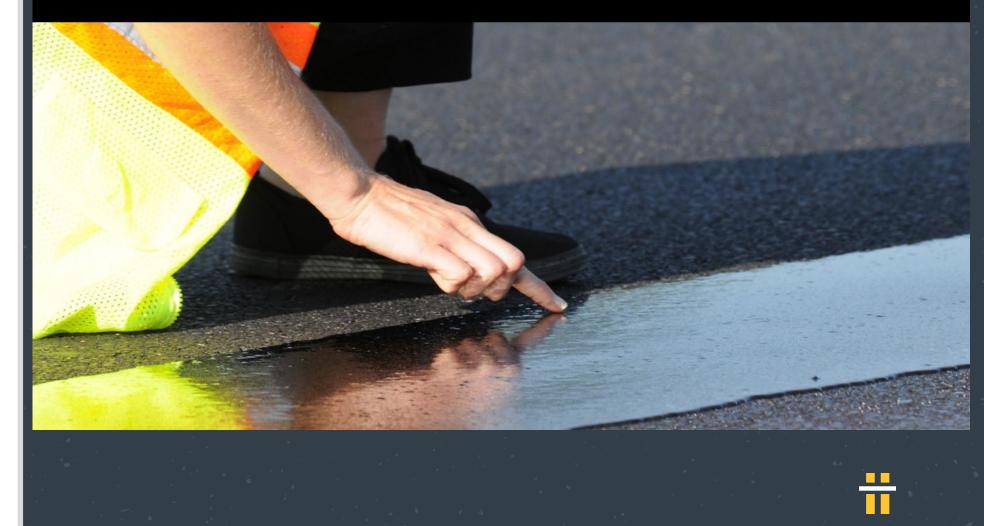
Paving 2nd Pass

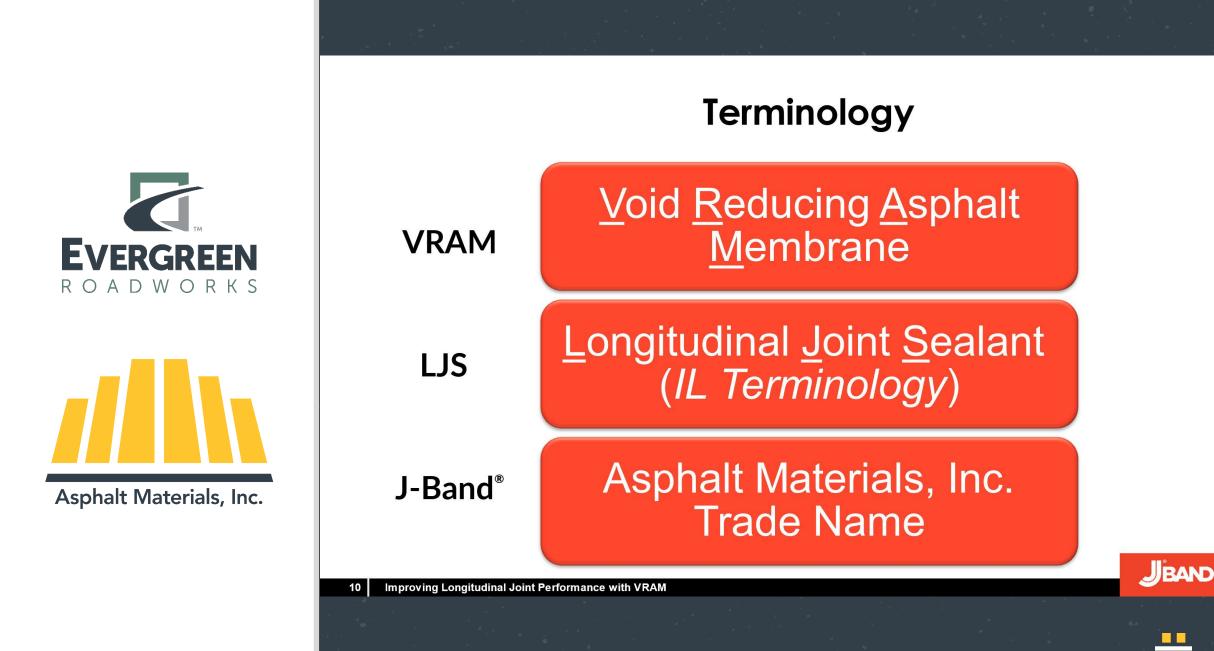
Paving 2nd Pass

Joint Pinching

Left: Hot to Cold

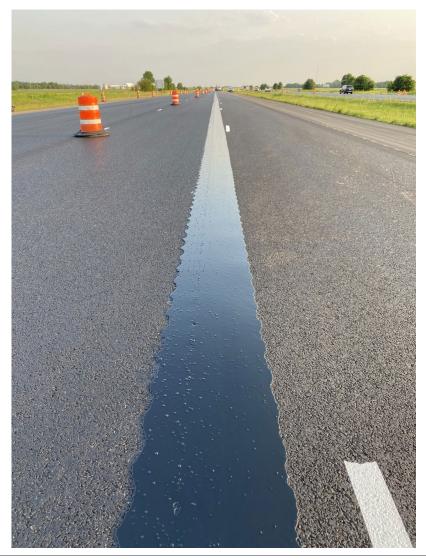
Right: Cold to Hot





Asphalt Materials, Inc.

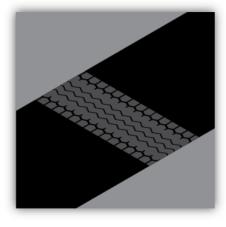
A Materials Solution



Void Reducing Asphalt Membrane (VRAM)

- Thick application of hot-applied, <u>polymer-</u> <u>modified asphalt</u> (~ 1 gal/sq yd for 1 ½" overlay)
- Application of an 18" band applied <u>before</u> paving in the location of the new longitudinal joint
- <u>Fills voids and reduces water intrusion at joint</u> from the bottom up - Impermeable
- <u>Bonds</u> to the underlying pavement and bond at the joint
- <u>Crack resistance at the joint</u>
- <u>Protects</u> underlying pavement layers
- <u>Materials</u> approach to improving joint performance

Asphalt Materials, Inc.


A Different Approach to Improve Joint Performance


Apply a heavy band of polymer-modified binder in the area where the new paving joint will be placed.

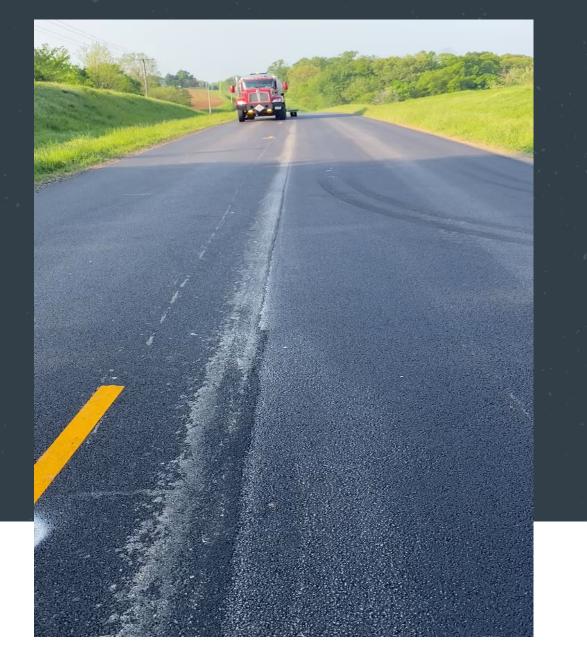
Place the first paving pass over half the width of the band of polymer-modified binder.

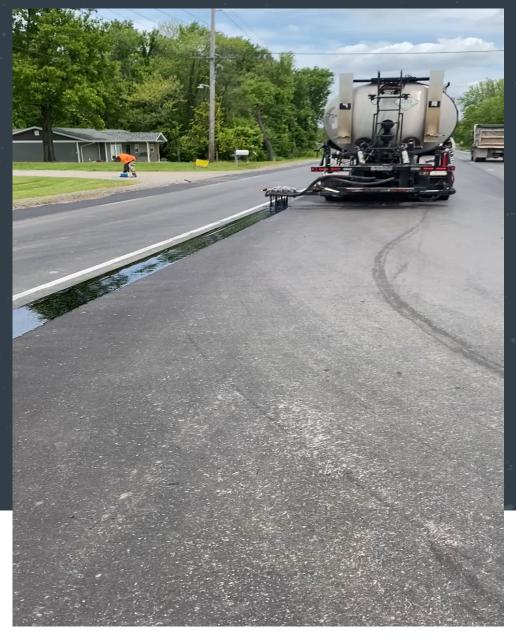
70


Fast acting, the road is ready for construction traffic, keeping the installation process efficient and traffic flowing.

Polymer-modified binder migrates into the HMA at the joint.

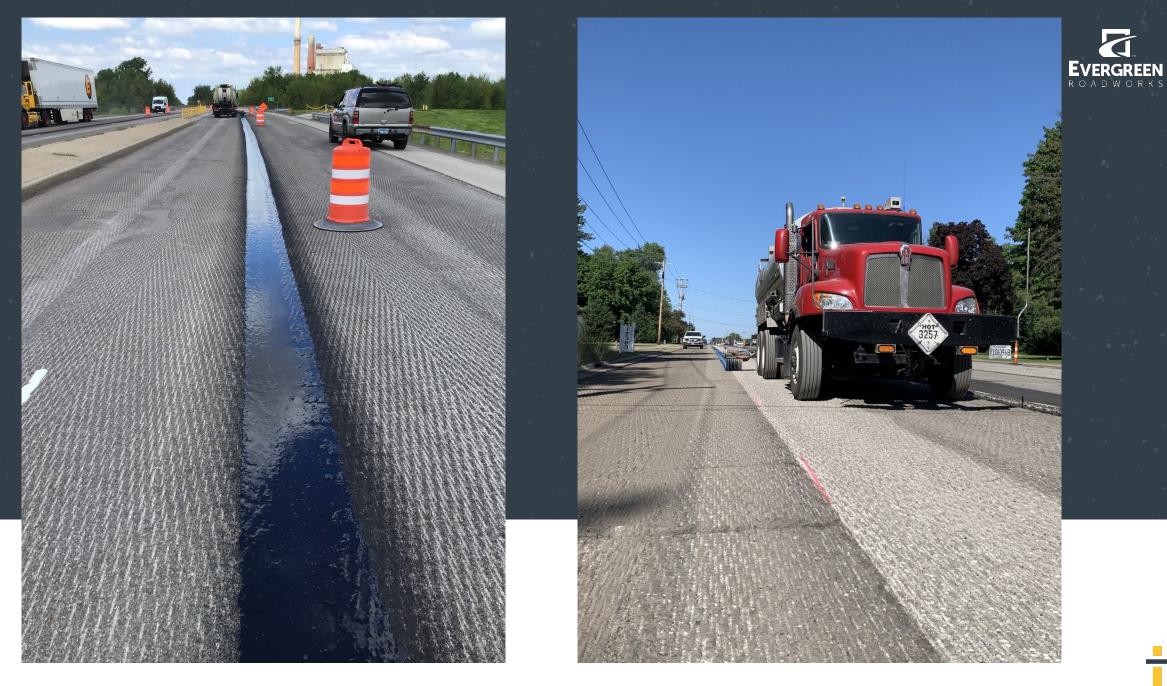
13 Improving HMA Pavements with a Void Reducing Asphalt Membrane





IL-13/IL-127 June 17, 2020

CH-4 Plainville Blacktop August 25, 2020

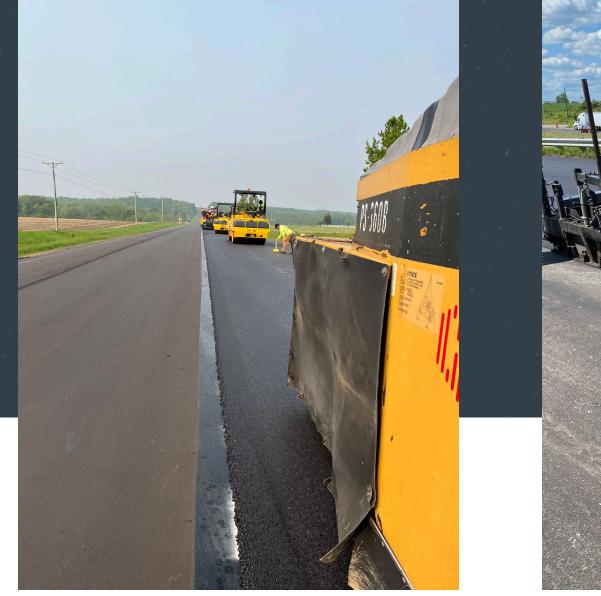


Evergreen roadworks

CH-5 Randolph County, IL May 9, 2022

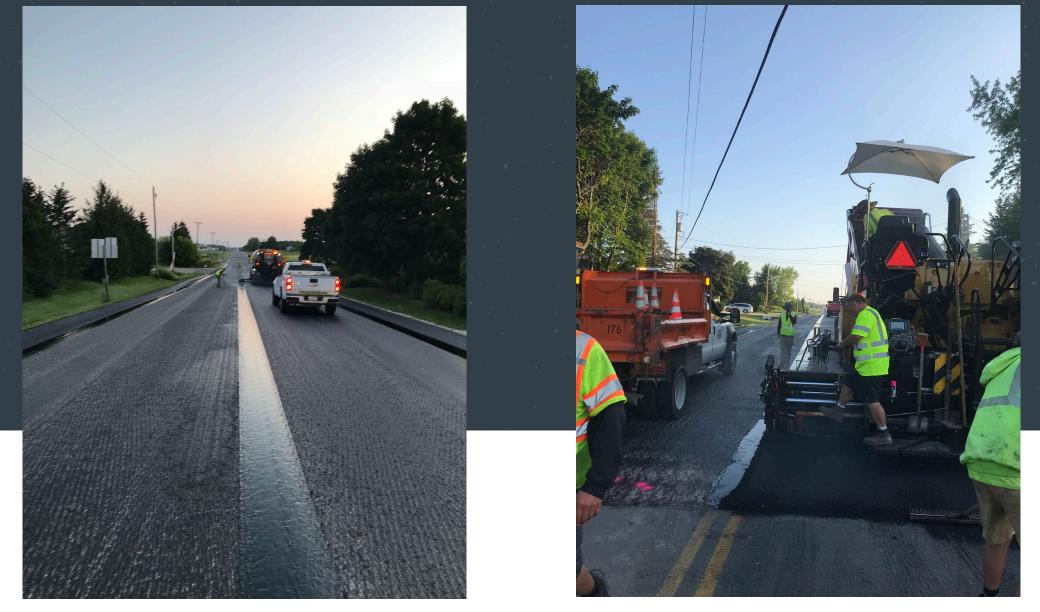
US-51 Carbondale June 2, 2022

IL-143 Alton May 6, 2020

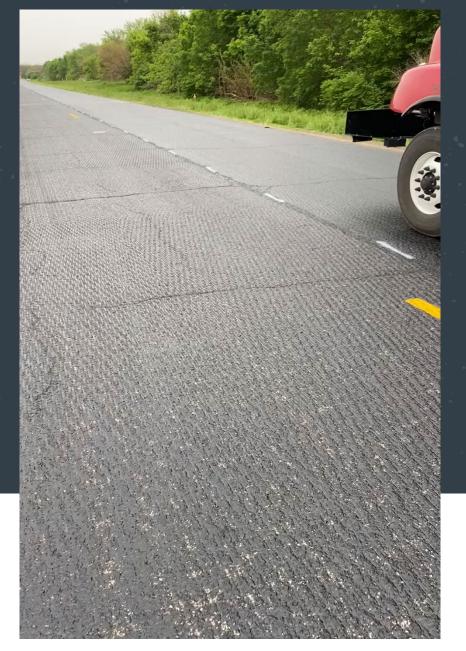

IN-23 Granger June 24, 2022

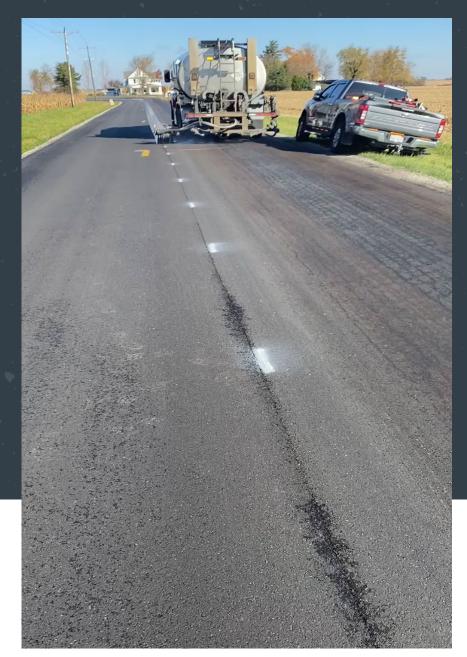
Paving with VRAM

÷



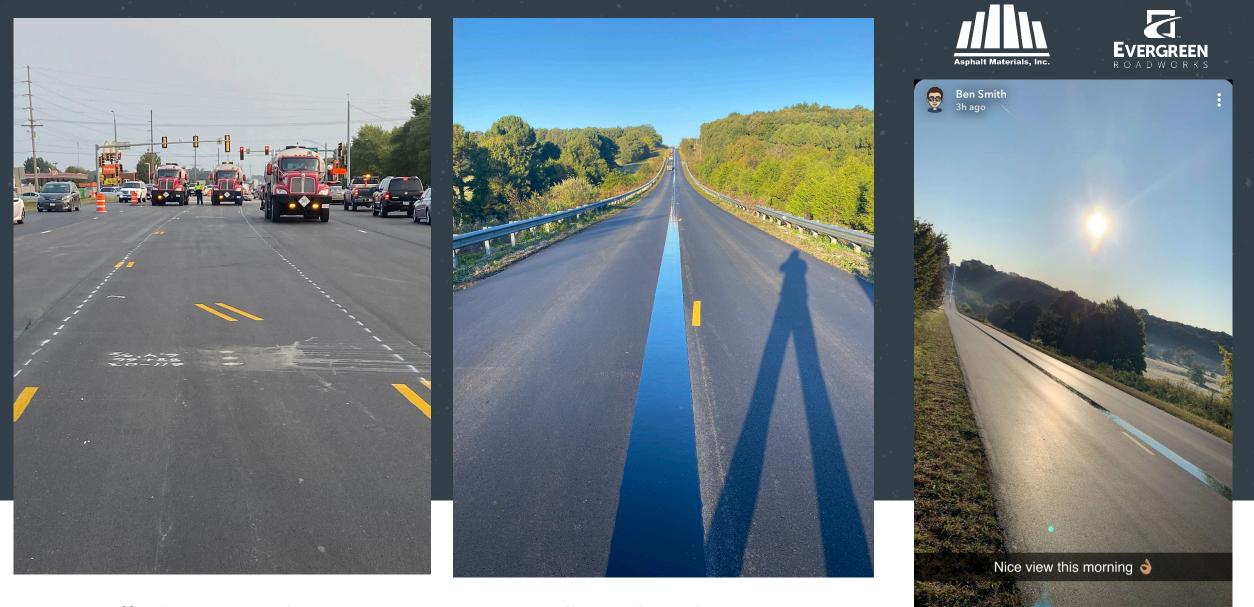
Sheboygan Falls, WI July 2022





6 Points Road Bloomington, IL May 2020

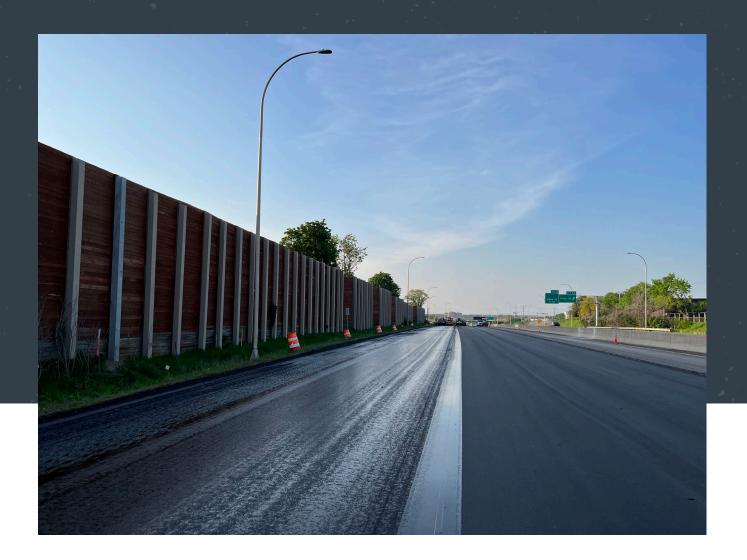
Allentown Road (CH-5) Tazwell County June 2020

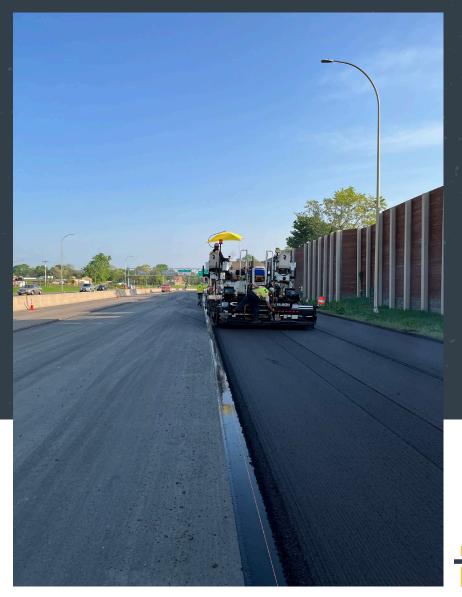

US-150 Farmer City May 12, 2023

CH-21 Macon County October 26, 2022

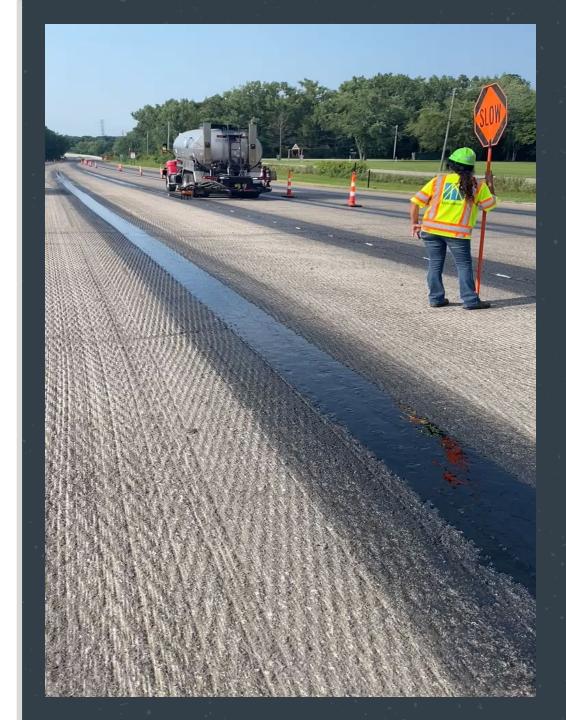
US-45 Effingham September 15, 2020

Goreville Road October 5, 2020


I-70 EB Effingham September 26, 2020


I-255 East St Louis April 16, 2020

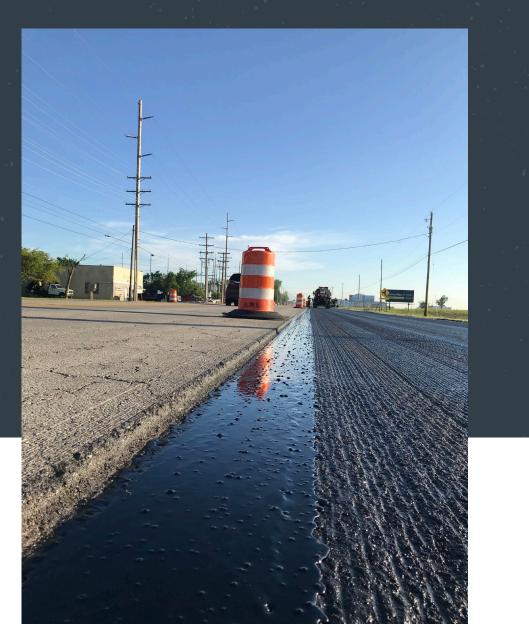
Bloomington, MN May 2023

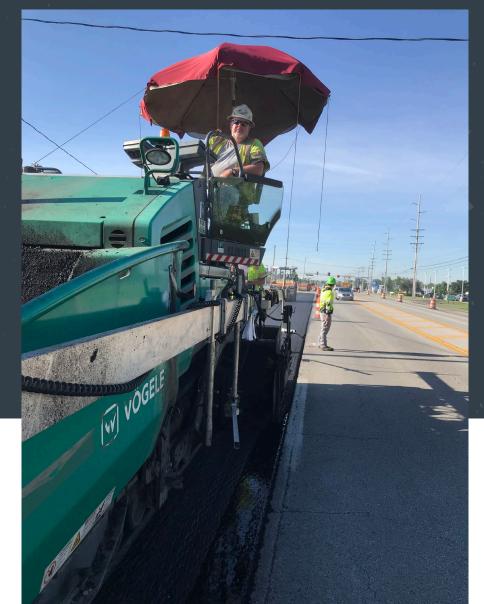




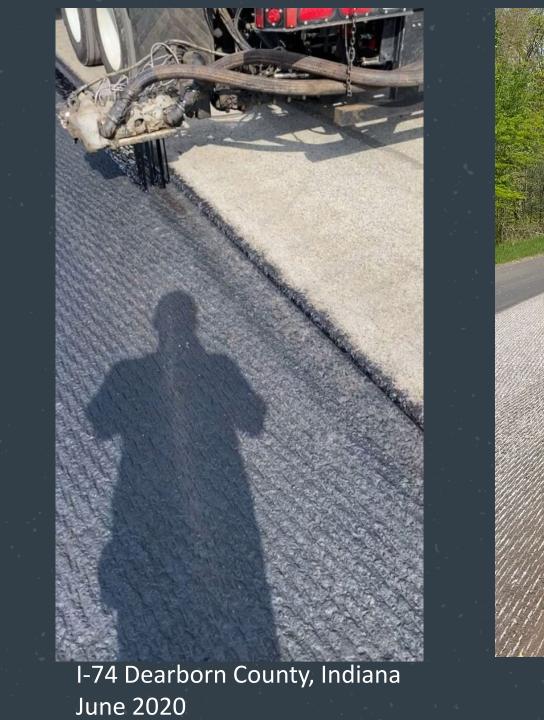
IN-149 Porter County July 27, 2021

Coles County Airport August 5, 2021




Ħ

Bowling Green, Ohio Half Width VRAM



I-64 Wayne County, IL April 2021

Upcoming Projects in MO with VRAM

- MO-79 in St Charles County O'Fallon: Pace Construction
- I-44 in St Louis County Eureka: Pace Construction
- US-69 in Clay County Excelsior Springs: Emery Sapp & Sons

Headers and Bridge Transitions

Asphalt Materials, Inc.

Goals


- Keep cigarette ash from falling off
- Keep truck from bouncing out of seat
- Don't wake sleeping baby in back seat

Asphalt Materials, Inc.

ROUGH ROAD

BUMP

÷

Types of Transverse Joints

- Bridge Approach
- New to Existing
 Pavement Tie In
- Existing Pavement to New – Take Off
- New to New

Helpers

- Lath or steel plates
- String Line
- Paint
- Joint Matcher
- Grade Control
- Staightedge
- 2x4's, bricks

Interesting Facts

- On I-70 between Greensburg, PA and Columbia, MO
- 347 Bridges & Box Culverts
- 1 lane of Surface Course has 674 approaches
- 4 lanes of Surface Course has 2,696 approaches
- Can we just pave across the bridges?

Bridge Approaches

- Tractor trailer length
- Average passenger car length
- Concentrate on the first 30 feet
- New construction, milling and paving all need to be checked

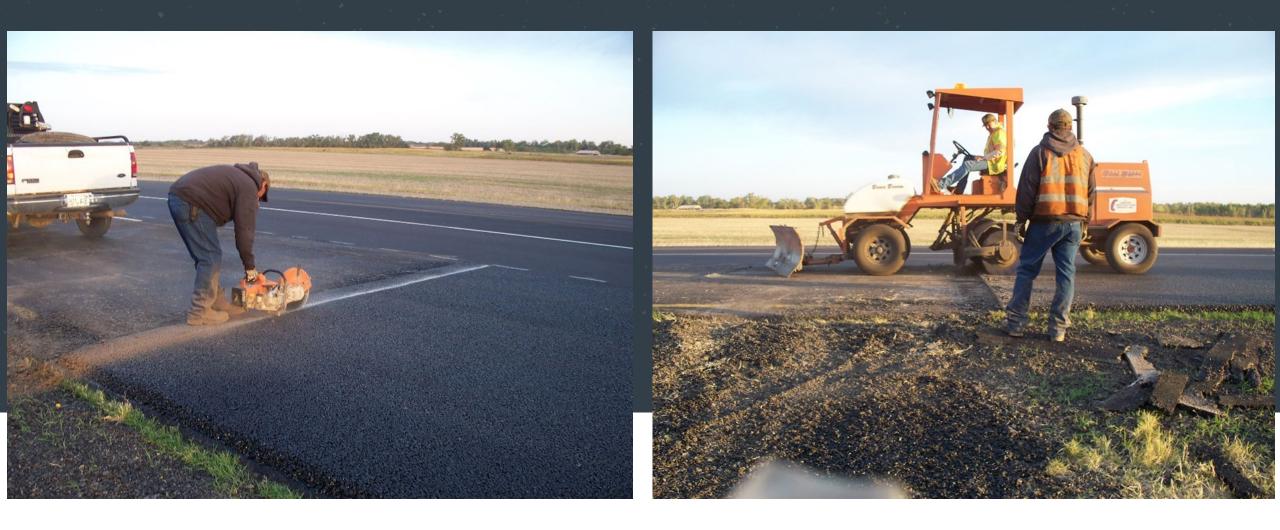
Take Off

- Check grade (string line)
- Lath
- Previous day's settings
- Null screw, then crank to feel
- Ensure mix is at proper temp
- Take of slow
- Lute
- Check with straight edge

Tie In

- Check grade (string line)
- Ensure mix is at proper temp
- Slow down in last 30 feet
- Keep an eye on screw if not using automatics
- Get the screed to the end
- Lute
- Check with straight edge

String Line Grade Control



Saw Cut and Clean

÷

Asphalt Materials, Inc.

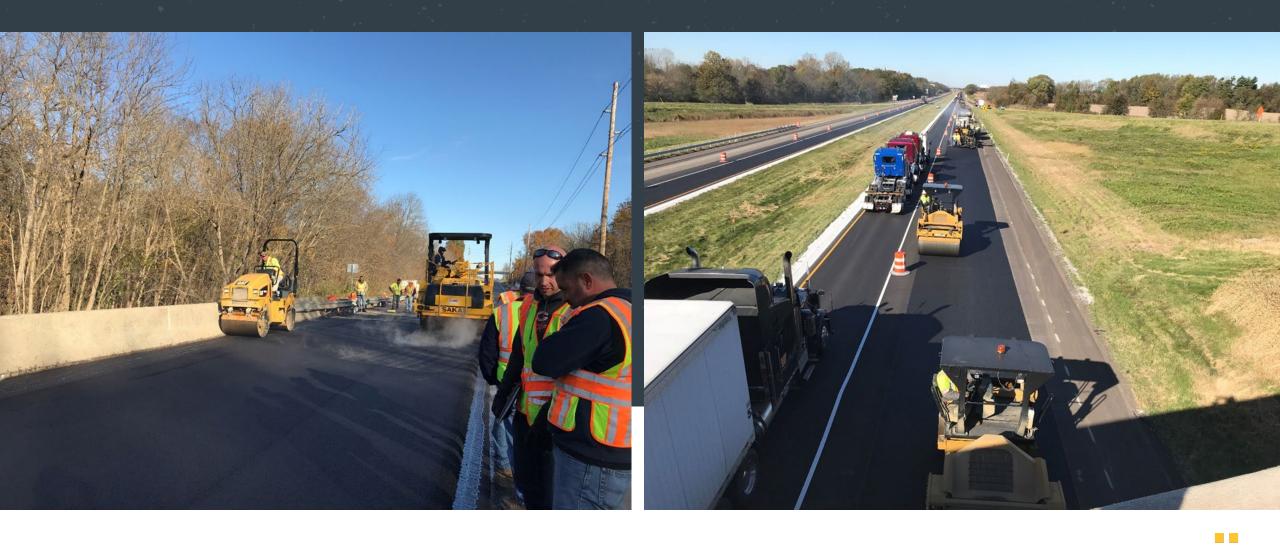
Tack & Paint the Face

Introducing the Mix

TAKE OFF SLOW!!!

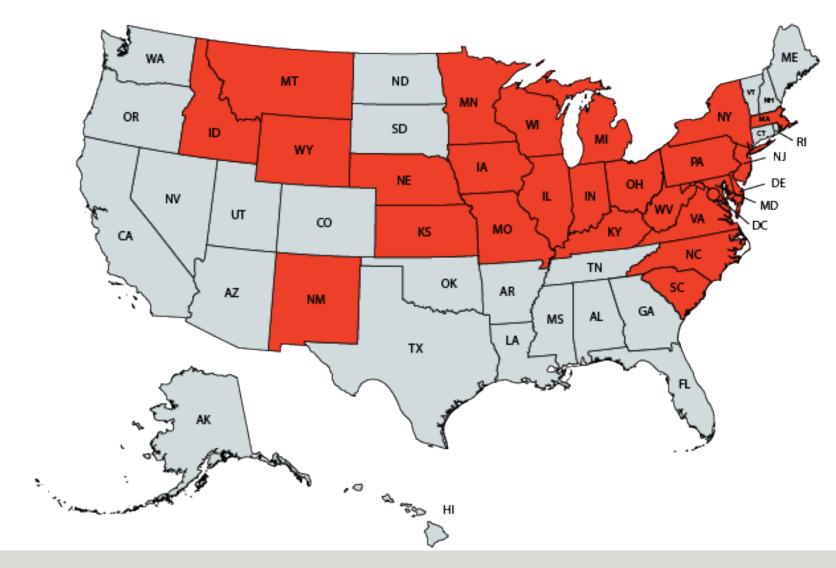
Rolling a good joint

Rolling a good joint


- Take your time
- Breakdown from Low side to High side will hold grade
- Intermediate from Low side to High side to continue holding grade
- Finish from High side to Low side will take out creases
- 190F drive through it

Rolling Preference

Check your work



Asphalt Materials, Inc.

States with VRAM

JBAND RESOURCES

÷

Asphalt Materials, Inc.

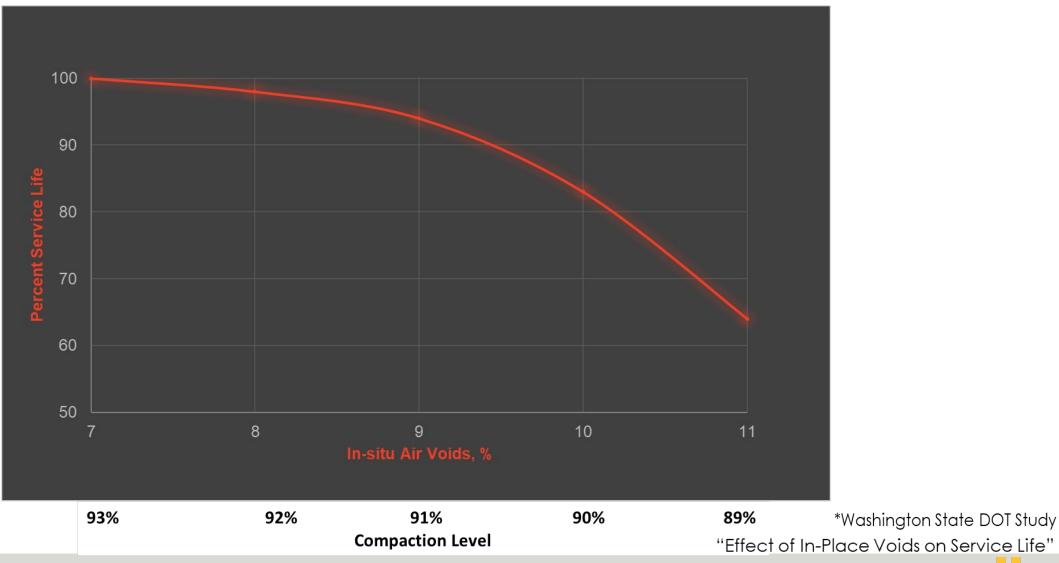
asphalt institute

Constructing Quality Longitudinal and Tr ansverse Joints

2024 MAPA: Black to Basics 2/7/2024 Jim Cunningham & Cullen Hesterberg

Asphalt Materials, Inc.

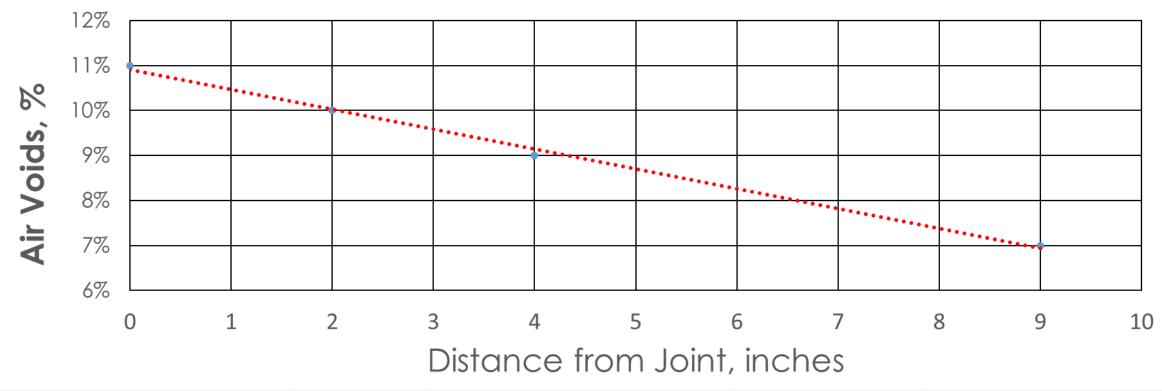
How difficult is it to find pavements like these?



Black to Basics 2024

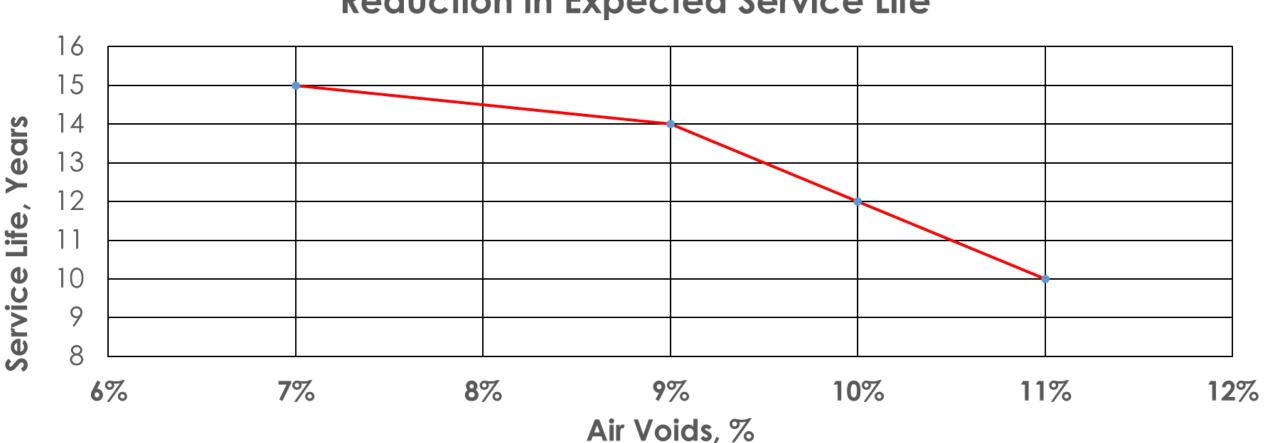
Why do joints fail early?

Longitudinal Construction Joints



- Issues
 - Cannot achieve the same density at the joint as in the mat
 - Water and air intrusion accelerates damage
 - Longitudinal construction joints
 - Commonly, the first area requiring maintenance on a pavement

Air Voids from Joint Towards Center of Lane


Air Voids from Unconfined Centerline Joint

Centerline going towards interior of mat

Effect of Air Voids on Pavement Service Life

Reduction in Expected Service Life

If the center of the mat is at 7% voids or less, but the joint is at 11% voids, the joint fails 5 years earlier than the rest of the pavement.

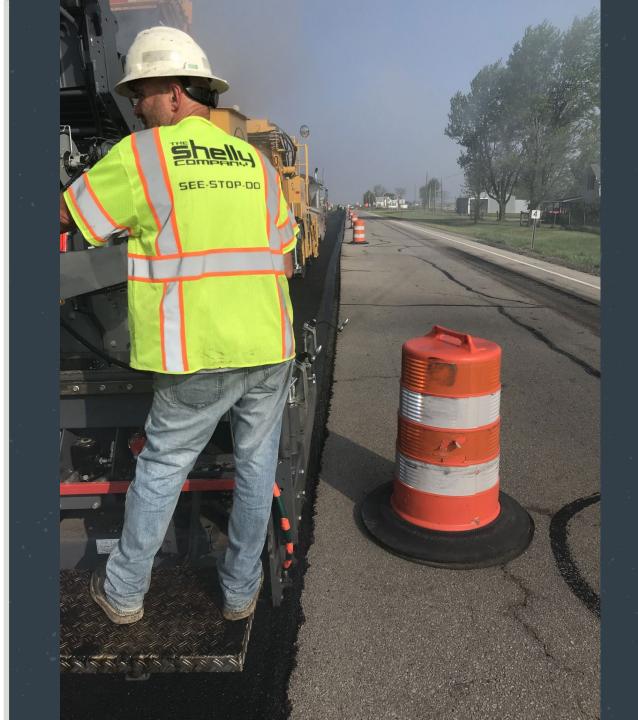
Longitudinal Construction Joints Historical Methods

- Mechanical Methods to Improve Joint Performance
 - Joint density requirements (typically target voids at 4" from joint to within 2% of center mat voids
 - Echelon paving (hot joint)
 - Mill and inlay (confined joint)
 - Notched wedge joint
 - Cutting wheel
 - Joint Heaters

Asphalt Materials, Inc.

Full Width Paving

Echelon Paving



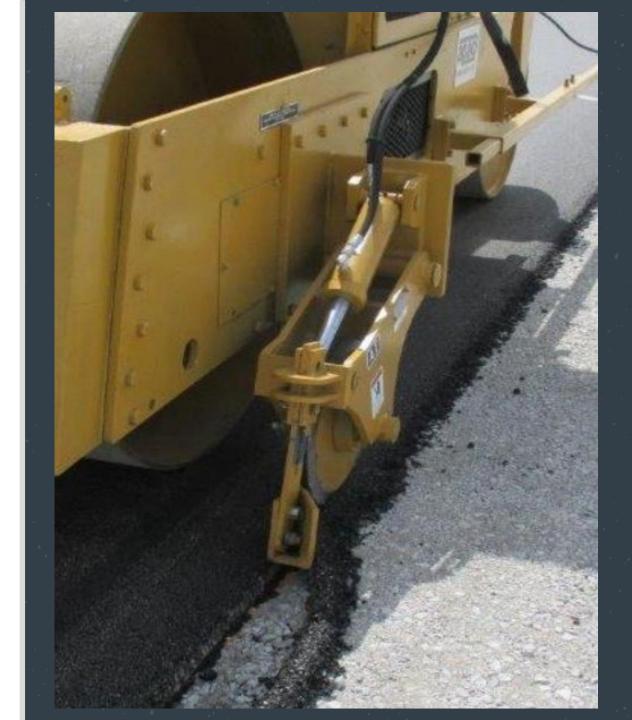
Asphalt Materials, Inc.

Mill & Inlay

Pave wide/mill back

Notched Wedge Paving

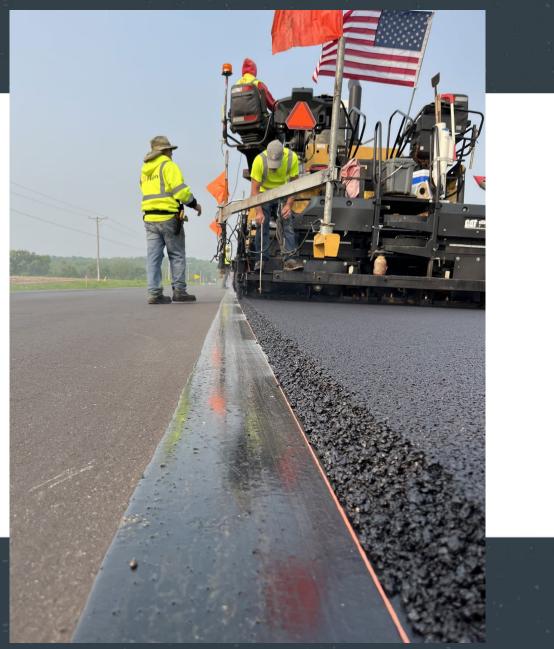
Notched Wedge Paving

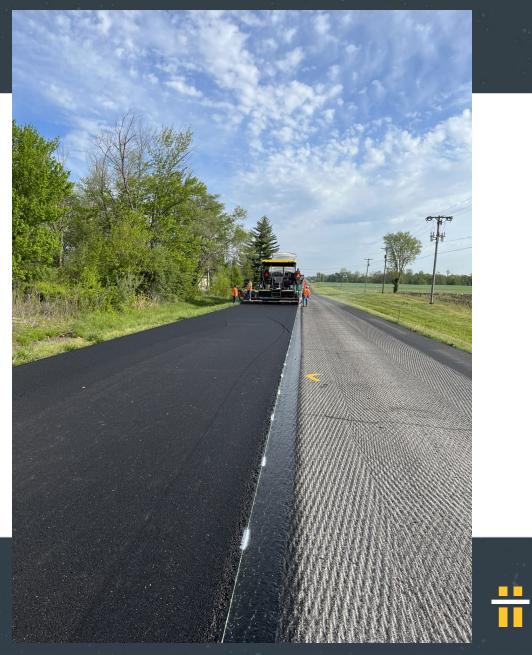


Asphalt Materials, Inc.

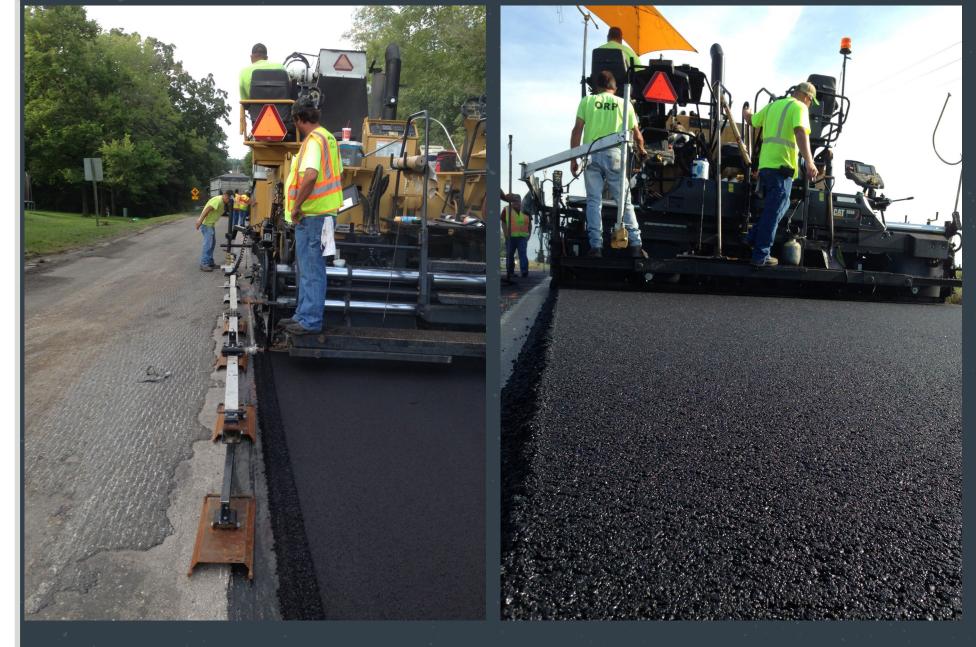
Cutting Wheel

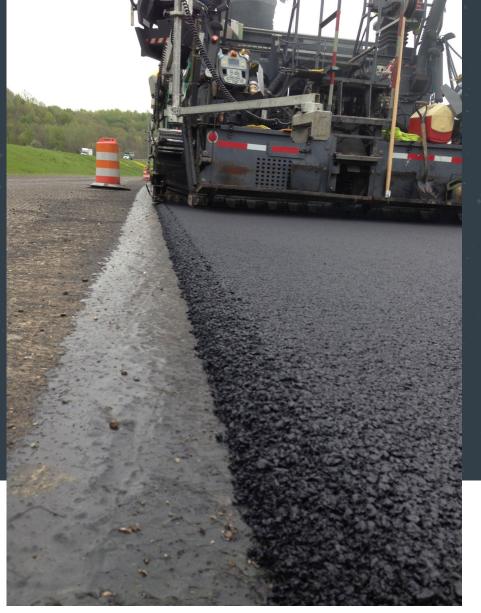
Joint Heater



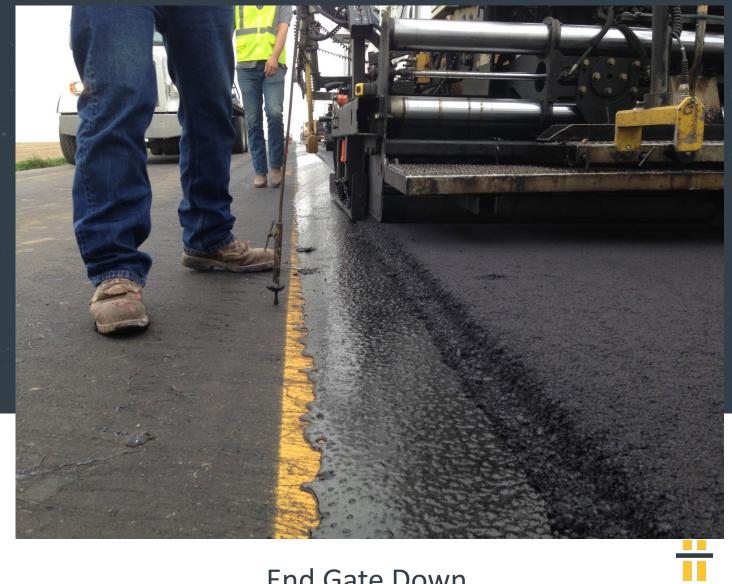

Daily Production Example

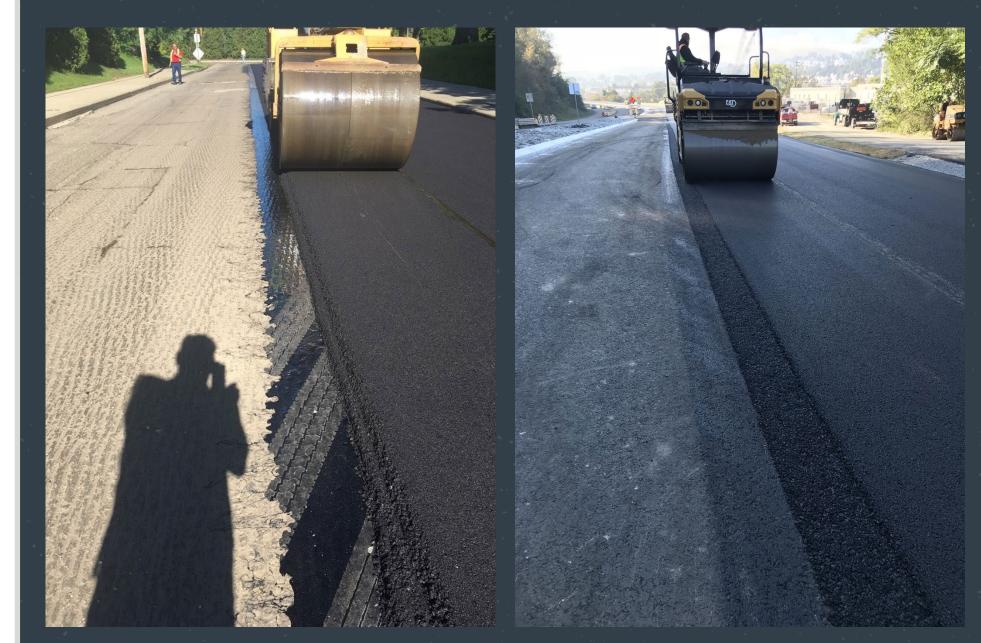
- 3 miles at 12 feet wide
- 1.50" Surface Course = 1,800 ton
- 1,800 ton in 9 hours = 200 ton per hour
- 200 ton per hour = 30 feet per minute
- PLANNING, PREPERATION, PERFORMANCE


Stringline



Contact Ski


Non-Contact Ski


End Gate Up

End Gate Down

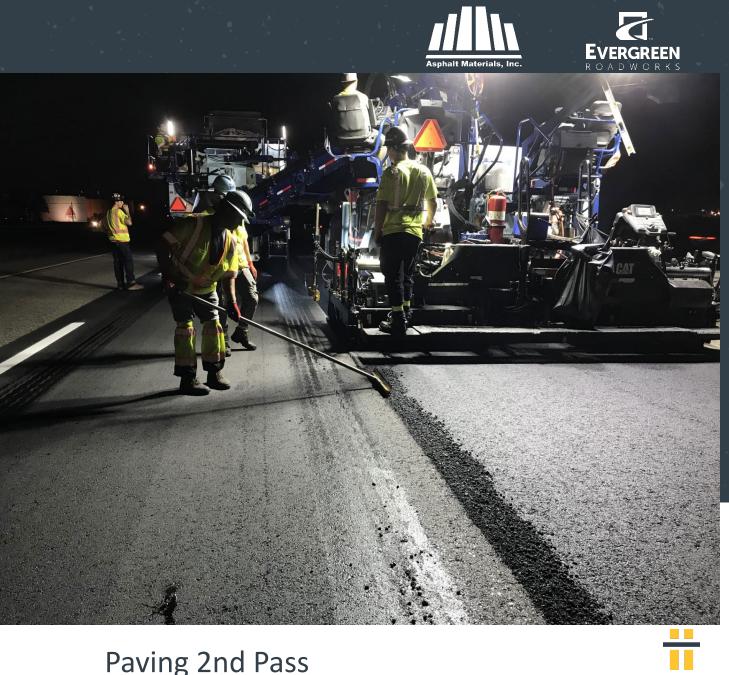
Asphalt Materials, Inc.

1st Roller Pass Overhang Joint

Finish Roll Notched Wedge

Rolling Patterns

Echelon



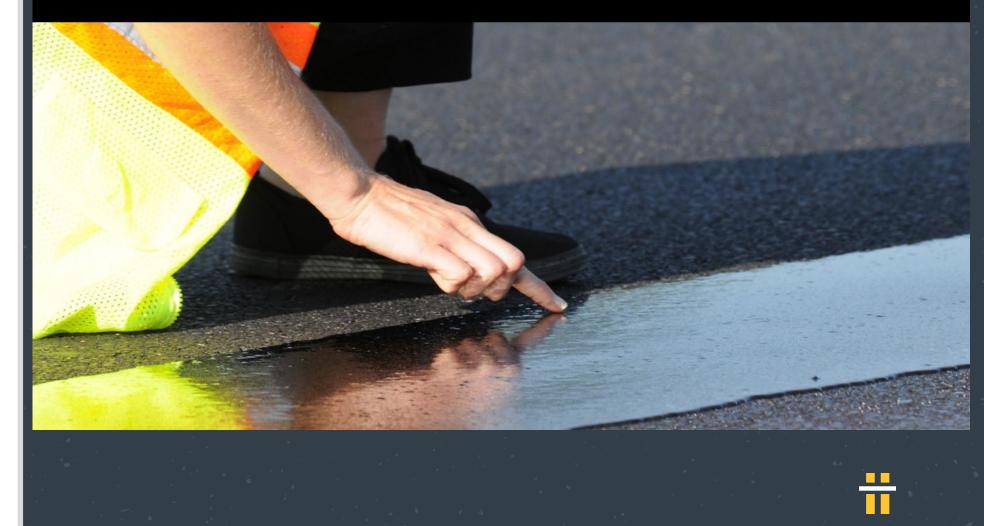
Paving 2nd Pass

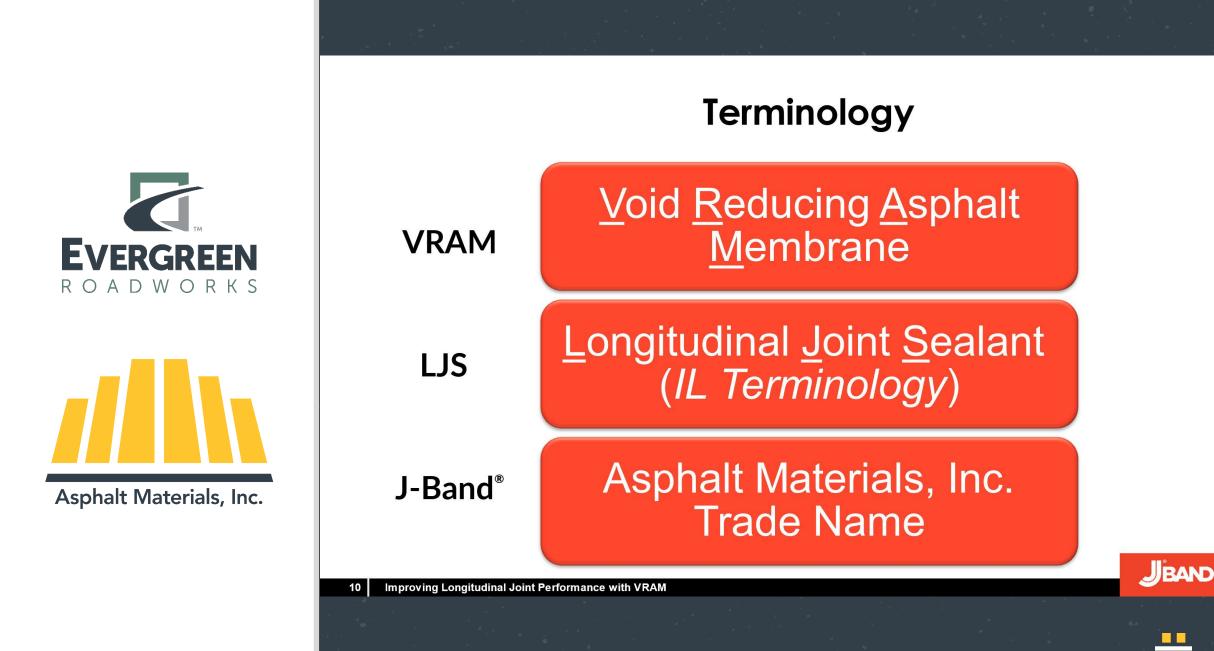
Paving 2nd Pass

Joint Pinching

Left: Hot to Cold

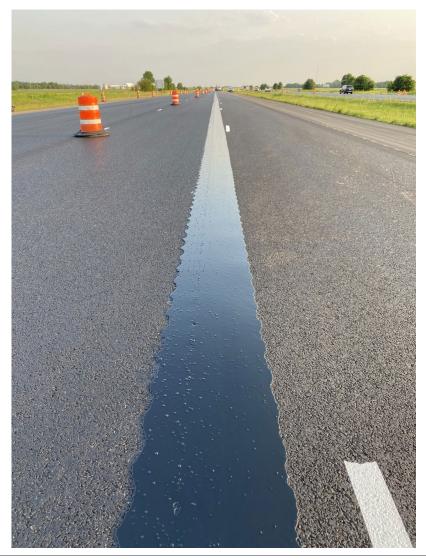
Right: Cold to Hot





Asphalt Materials, Inc.

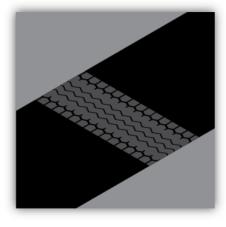
A Materials Solution



Void Reducing Asphalt Membrane (VRAM)

- Thick application of hot-applied, <u>polymer-</u> <u>modified asphalt</u> (~ 1 gal/sq yd for 1 ½" overlay)
- Application of an 18" band applied <u>before</u> paving in the location of the new longitudinal joint
- <u>Fills voids and reduces water intrusion at joint</u> from the bottom up - Impermeable
- <u>Bonds</u> to the underlying pavement and bond at the joint
- <u>Crack resistance at the joint</u>
- <u>Protects</u> underlying pavement layers
- <u>Materials</u> approach to improving joint performance

Asphalt Materials, Inc.


A Different Approach to Improve Joint Performance


Apply a heavy band of polymer-modified binder in the area where the new paving joint will be placed.

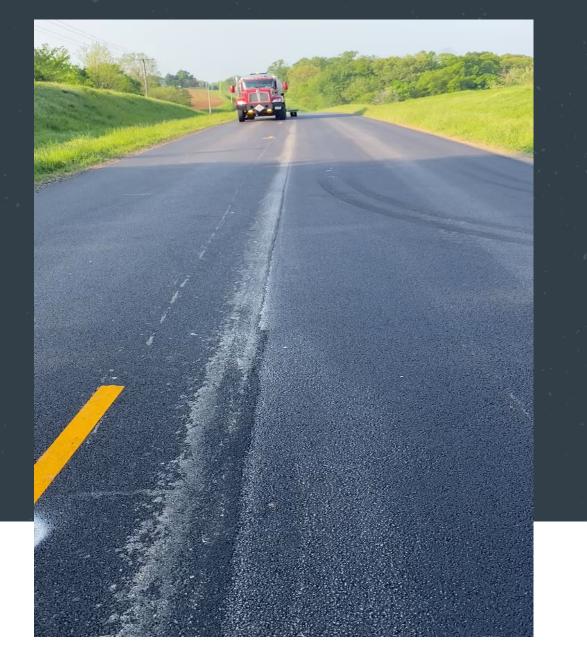
Place the first paving pass over half the width of the band of polymer-modified binder.

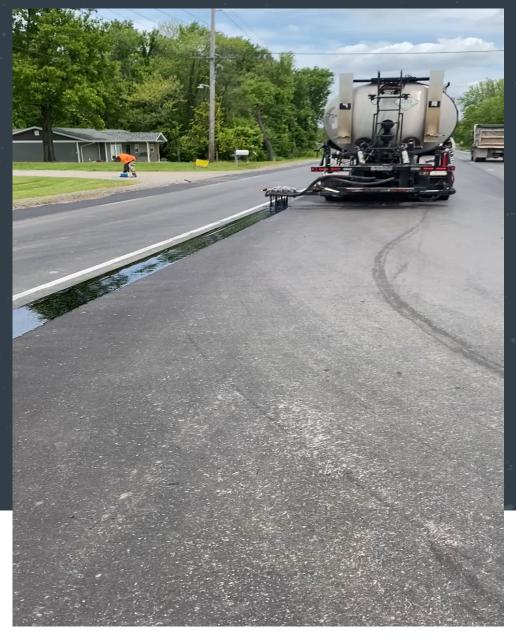
70


Fast acting, the road is ready for construction traffic, keeping the installation process efficient and traffic flowing.

Polymer-modified binder migrates into the HMA at the joint.

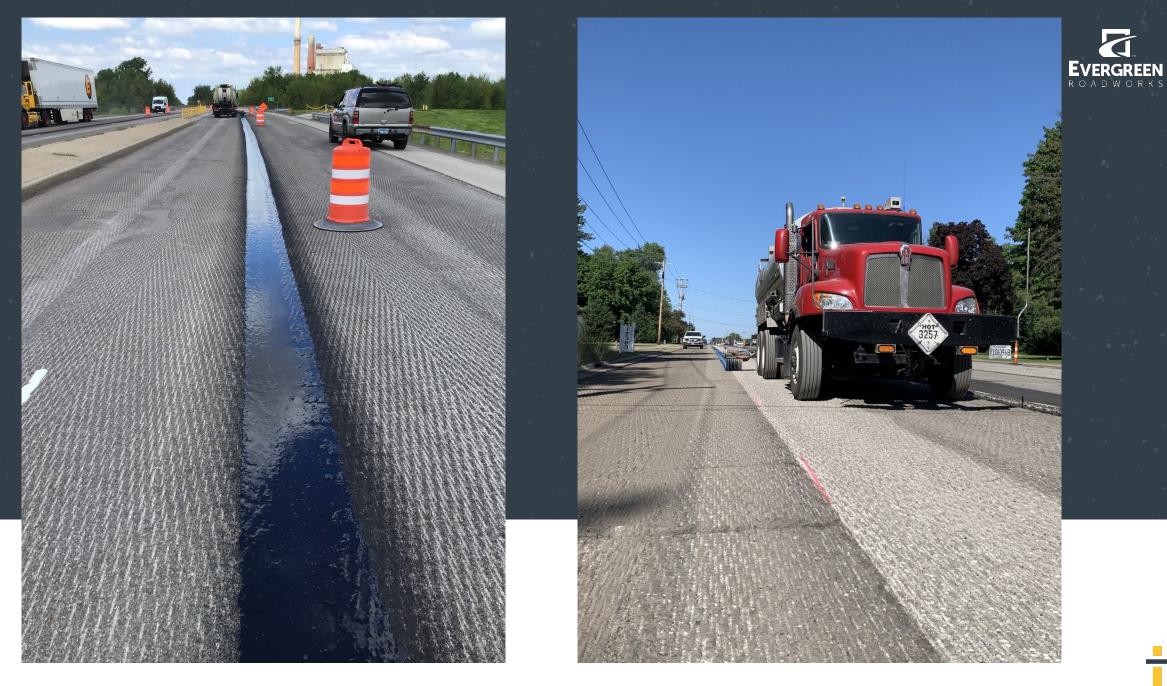
13 Improving HMA Pavements with a Void Reducing Asphalt Membrane





IL-13/IL-127 June 17, 2020

CH-4 Plainville Blacktop August 25, 2020

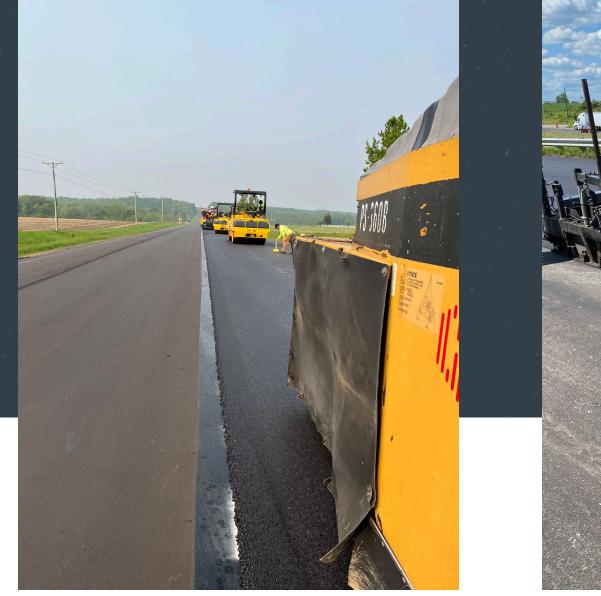


Evergreen roadworks

CH-5 Randolph County, IL May 9, 2022

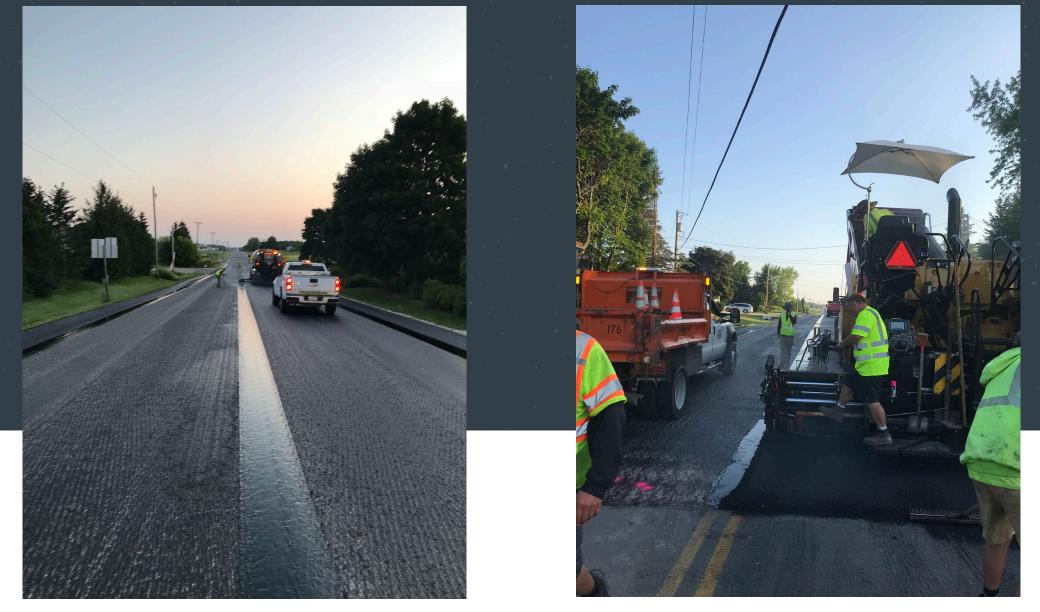
US-51 Carbondale June 2, 2022

IL-143 Alton May 6, 2020

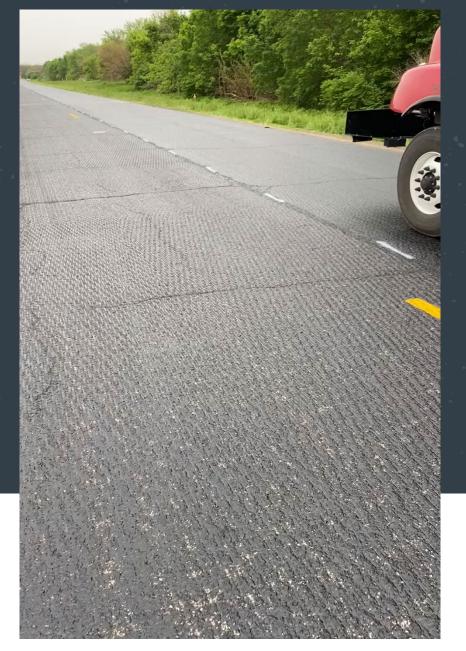

IN-23 Granger June 24, 2022

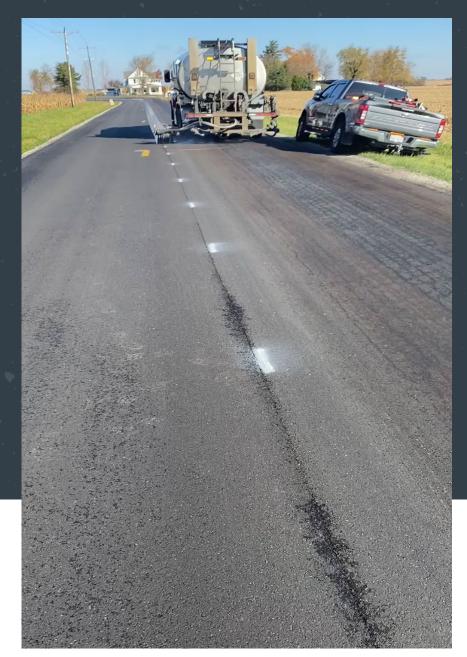
Paving with VRAM

÷



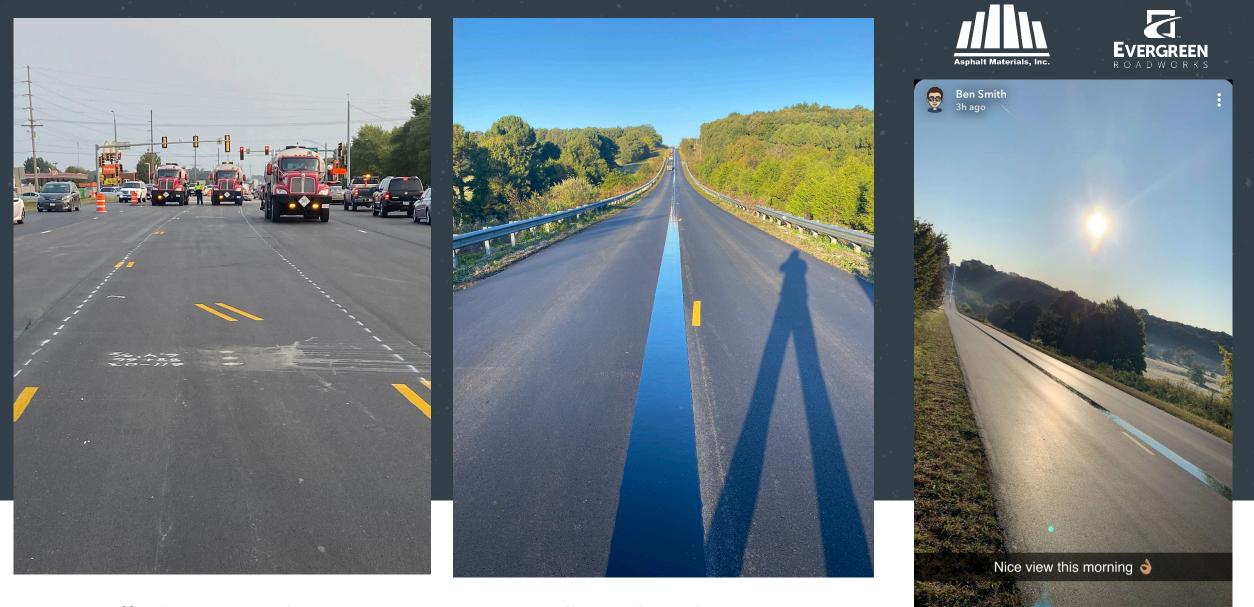
Sheboygan Falls, WI July 2022





6 Points Road Bloomington, IL May 2020

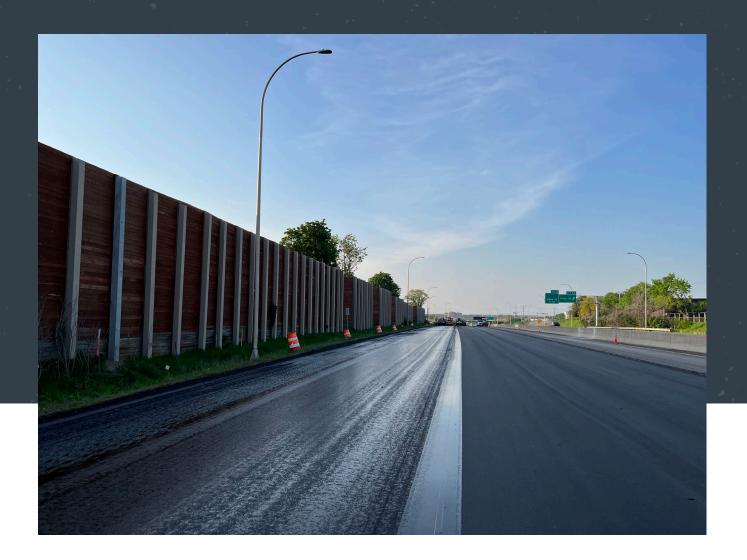
Allentown Road (CH-5) Tazwell County June 2020

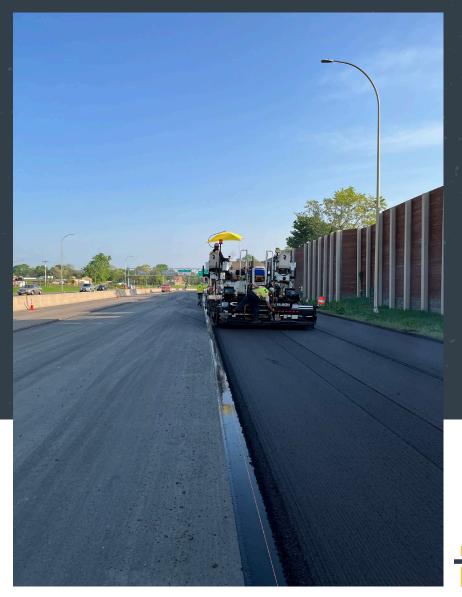

US-150 Farmer City May 12, 2023

CH-21 Macon County October 26, 2022

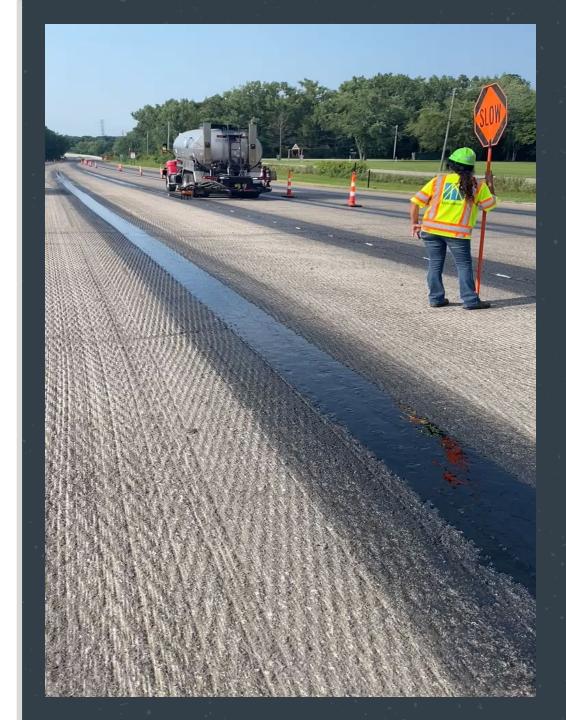
US-45 Effingham September 15, 2020

Goreville Road October 5, 2020


I-70 EB Effingham September 26, 2020


I-255 East St Louis April 16, 2020

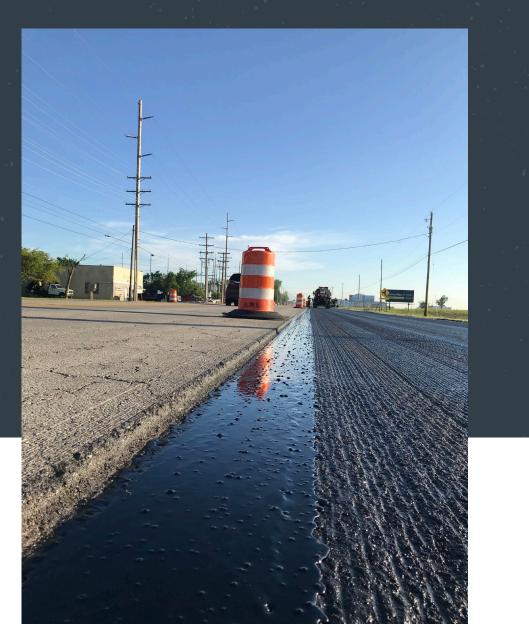
Bloomington, MN May 2023

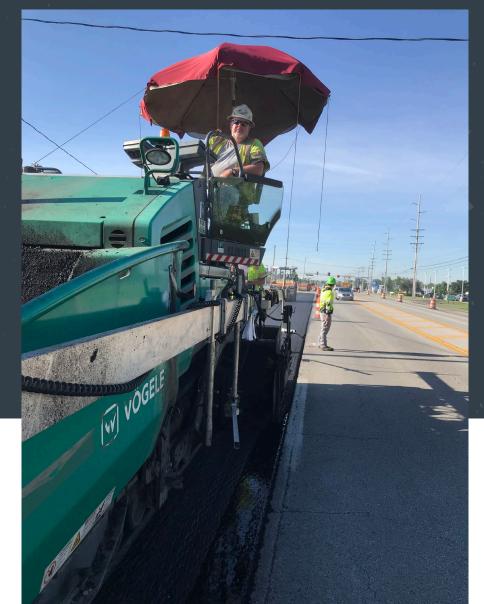




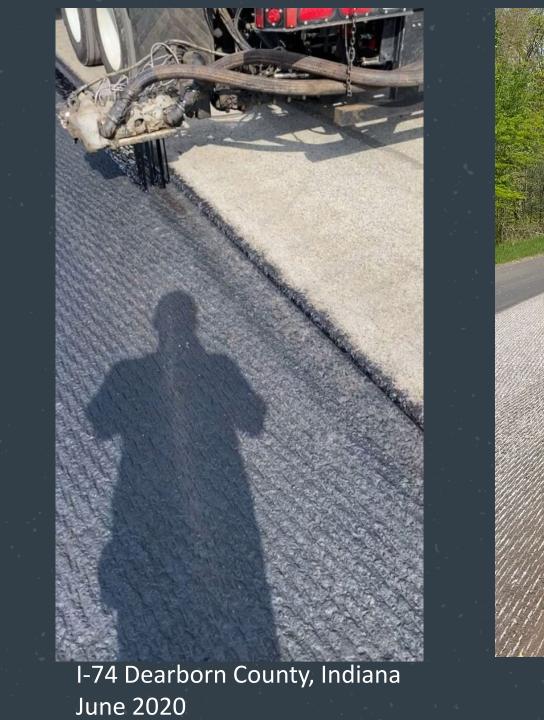
IN-149 Porter County July 27, 2021

Coles County Airport August 5, 2021




Ħ

Bowling Green, Ohio Half Width VRAM



I-64 Wayne County, IL April 2021

Upcoming Projects in MO with VRAM

- MO-79 in St Charles County O'Fallon: Pace Construction
- I-44 in St Louis County Eureka: Pace Construction
- US-69 in Clay County Excelsior Springs: Emery Sapp & Sons

Headers and Bridge Transitions

Asphalt Materials, Inc.

Goals


- Keep cigarette ash from falling off
- Keep truck from bouncing out of seat
- Don't wake sleeping baby in back seat

Asphalt Materials, Inc.

ROUGH ROAD

BUMP

÷

Types of Transverse Joints

- Bridge Approach
- New to Existing
 Pavement Tie In
- Existing Pavement to New – Take Off
- New to New

Helpers

- Lath or steel plates
- String Line
- Paint
- Joint Matcher
- Grade Control
- Staightedge
- 2x4's, bricks

Interesting Facts

- On I-70 between Greensburg, PA and Columbia, MO
- 347 Bridges & Box Culverts
- 1 lane of Surface Course has 674 approaches
- 4 lanes of Surface Course has 2,696 approaches
- Can we just pave across the bridges?

Bridge Approaches

- Tractor trailer length
- Average passenger car length
- Concentrate on the first 30 feet
- New construction, milling and paving all need to be checked

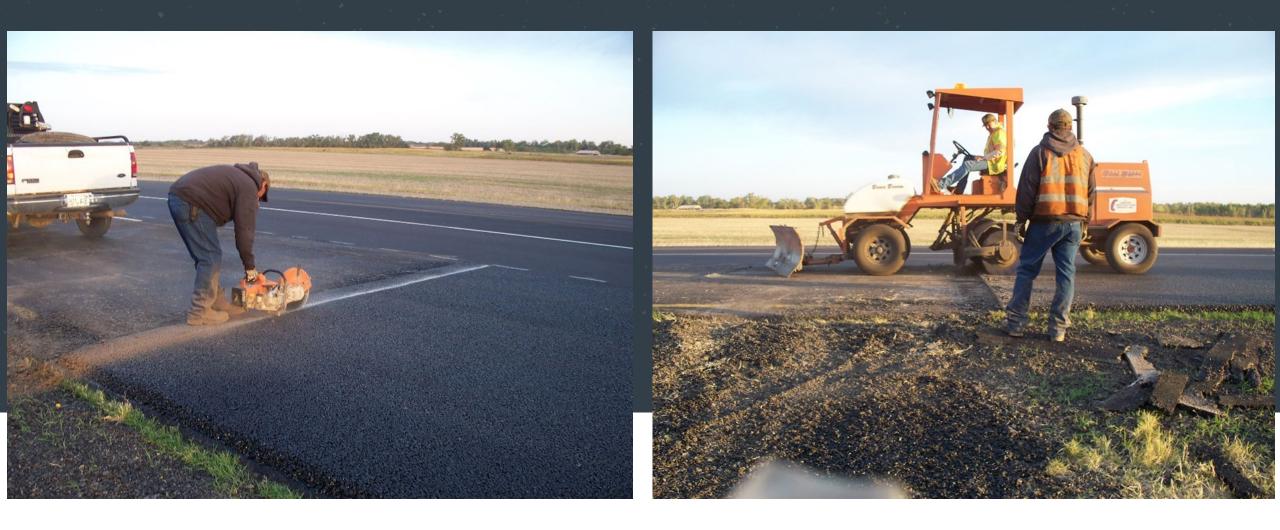
Take Off

- Check grade (string line)
- Lath
- Previous day's settings
- Null screw, then crank to feel
- Ensure mix is at proper temp
- Take of slow
- Lute
- Check with straight edge

Tie In

- Check grade (string line)
- Ensure mix is at proper temp
- Slow down in last 30 feet
- Keep an eye on screw if not using automatics
- Get the screed to the end
- Lute
- Check with straight edge

String Line Grade Control



Saw Cut and Clean

÷

Asphalt Materials, Inc.

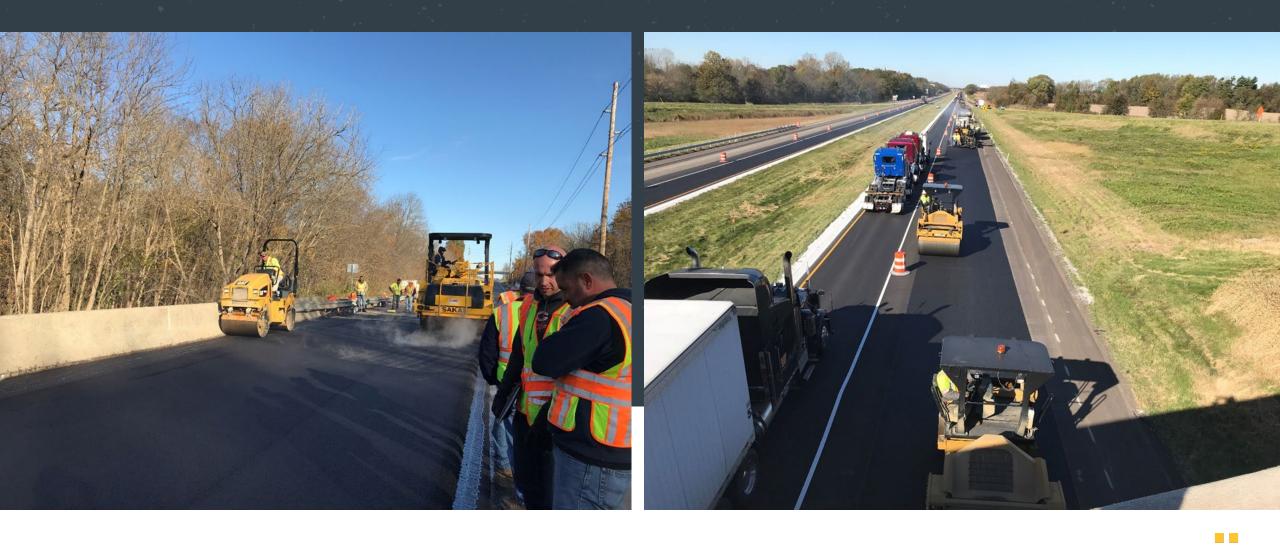
Tack & Paint the Face

Introducing the Mix

TAKE OFF SLOW!!!

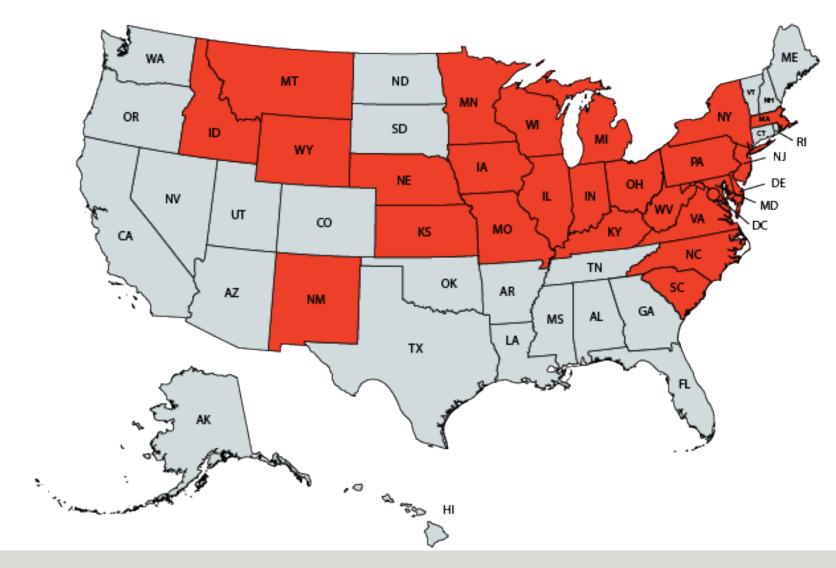
Rolling a good joint

Rolling a good joint


- Take your time
- Breakdown from Low side to High side will hold grade
- Intermediate from Low side to High side to continue holding grade
- Finish from High side to Low side will take out creases
- 190F drive through it

Rolling Preference

Check your work



Asphalt Materials, Inc.

States with VRAM

JBAND RESOURCES

÷

Asphalt Materials, Inc.

asphalt institute

Key Items for Balanced Mix Design (BMD) Implementation: Sumaries from Peer Exchanges

2024 MAPA Back to Basic Spring Training February 7th, 2024

Derek Nener-Plante, M.S., P.E. Pavement & Materials Engineer Resource Center Office of Innovation Implementation 2

U.S. Department of Transportation Federal Highway Administration

> OOO Federal Highway Administration ORESOURCE CENTER OOOO Office of Innovation Implementation

Disclaimers

- The contents of this presentation do not have the force and effect of law and are not meant to bind the public in any way. This presentation is intended only to provide information to the public regarding existing requirements under the law or agency policies.
- The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this presentation only because they are considered essential to the objective of the presentation. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.
- All AASHTO & ASTM standards mentioned in this presentation content are private, voluntary standards and compliance with them are not required under Federal law.
- Unless noted otherwise, FHWA is the source for all images in this presentation.

0

U.S. Department of Transportation Federal Highway Administration

Acknowledgements

- <u>Tim Aschenbrener</u> (FHWA) and <u>Elie Hajj</u> (University Nevada, Reno) for their work on BMD under the FHWA-UNR Co-Op, for which most of this information was generated.
 - DDIAPT, Tasks C.1.4, C.1.7, & C.1.8.
 - The content in this presentation is derived in part from work under cooperative agreement No. 693JJ31850010. The U.S. Government assumes no liability for the use of the information.

3

What do we want to get out of this?

Hear challenges of Balanced Mix Design implementation as heard from State DOT's and Contractors across the country

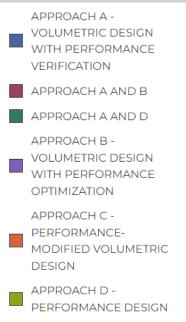
Office of Innovation Implementation

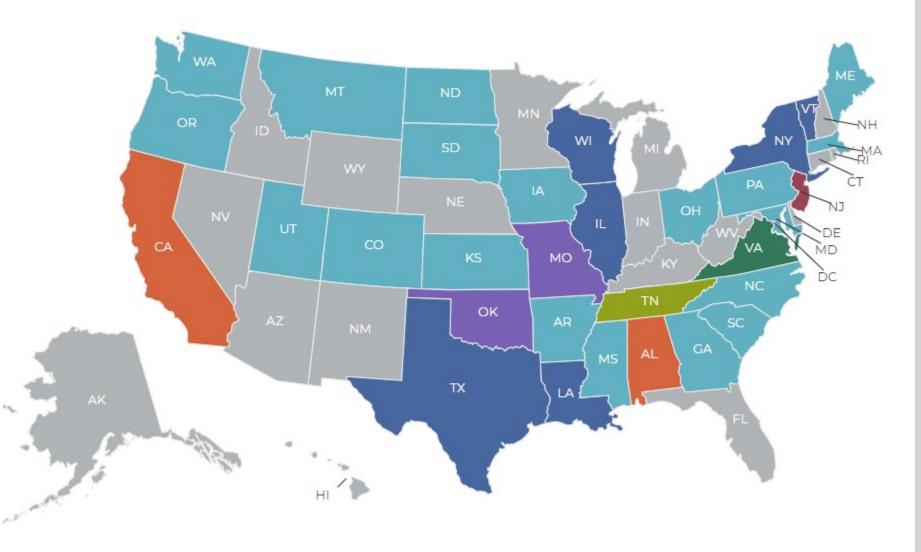
Background

Definitions

What is **BMD**?

• AASHTO PP 105-20: "BMD is an asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate, and location within the pavement structure."


<u>TRB's Transportation Research Circular E-C280: Glossary of</u> <u>Terms for Balanced Design of Asphalt Mixtures</u> provides a reference document for usage of Balanced Mix Design terminology by the asphalt mixtures community in the United States. Design "philosophy" used to optimize the mix performance against distresses pertinent to the climate & traffic specific to the region where it will be placed.


U.S. Department of Transportation Federal Highway Administration

Numerous States Moving to BMD

PRE-IMPLEMENTATION

Source: NAPA <u>https://www.asphaltpavement.org/exp</u> ertise/engineering/resources/bmd-resourceguide/implementation-efforts

U.S. Department of Transportation Federal Highway Administration

2

Office of Innovation Implementation

Overall BMD Implementation Process 8 Tasks That Can be Undertaken (Schedule Example)

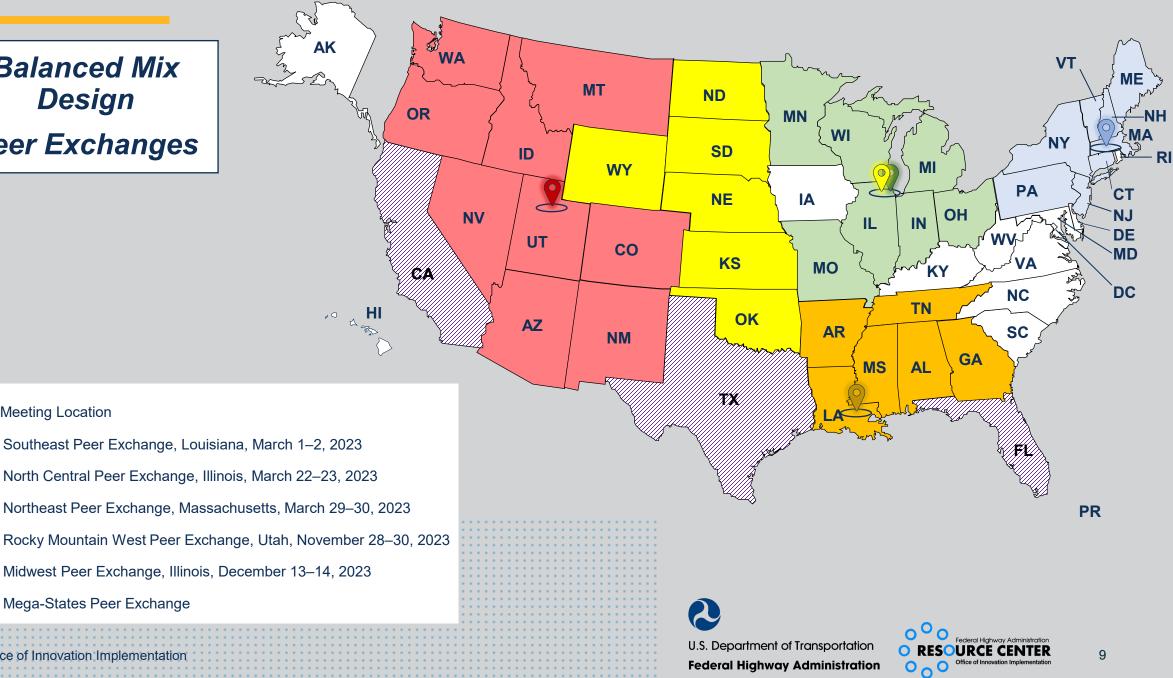
Task		Sub	Description		Years						
		Task			1	2	3	4	5	6	7
1	Understanding the why and benefits of Performance Specifications										
2	Overall Planning	2.1	Identification of Champions								
		2.2	Establishing a Stakeholders Partnership								
		2.3	Doing Your Homework								
		2.4	Establishing Goals								
		2.5	Mapping the Tasks								
		2.6	Identifying Available External Technical Information and Support (periodically)							•	
		2.7	Developing an Implementation Timeline							-0	
3	Selecting Performance Tests	3.1	Identifying Primary Modes of Distress.			•					
		3.2	Identifying and Assessing Performance Test Appropriateness.			•					
		3.3	Validating the Performance Tests						•		
4	Performance Testing Equipment: Acquiring, Managing Resources, Training, and Evaluating	4.1	Acquiring Equipment			•			•		
		4.2	Managing Resources								
		4.3	Conducting Initial Training				•				
		4.4	Evaluating Performance Tests						•		
		4.5	Conducting Inter-Laboratory Studies						-		
5	Establishing Baseline Data	5.1	Reviewing Historical Data & Information Management System				P				
		5.2	Conducting Benchmarking studies					•			
		5.3	Conducting Shadow Projects						-0		
		5.4	Analyzing Production Data						•		
		5.5	Determining How to Adjust Asphalt Mixtures Containing Local Materials							-0	
6	Specifications and Program Development	6.1	Sampling and Testing Plans							-0	
		6.2	Pay Adjustment Factors (If Part of the Goals)							-0	
		6.3	Developing Pilot Specifications and Policies							-0	
		6.4	Conducting Pilot Projects							-0	
		6.5	Final Analysis and Specification Revisions								•
7	Training, Certifications,	7.1	Developing and/or Updating Training and Certification Programs								-0
	and Accreditations	7.2	Establishing or Updating Laboratory Accreditation Program Requirements								-0
8	Initial Implementation										

Not all tasks may be applied/considered.

Considerations to:

- Organizational structure, staffing, workspace, asphalt tonnage, etc.
- Industry experiences & practices.

Inter-related tasks or subtasks activities.


<u>Tech Brief: Balanced Asphalt Mix</u> <u>Design: Eight Tasks for Implementation</u>

U.S. Department of Transportation Federal Highway Administration

Office of Innovation Implementation

Office of Innovation Implementation

Mega-States Peer Exchange

Meeting Location

Federal Highway Administration

U.S. Department of Transportation Federal Highway Administration

Critical Challenges

Critical Challenges for BMD

Its more than just technical items! Management Challenges

Technical Challenges

11

Office of Innovation Implementation

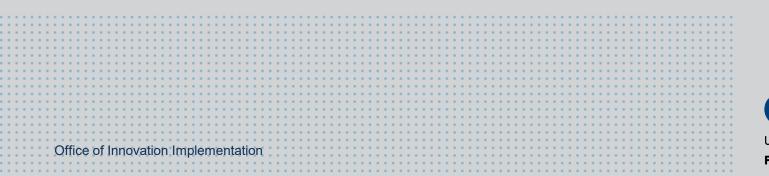
Management Challenges

- Change Management.
- Cost-Benefit Analysis
- Specifications & Risk Management.
- Resource Allocation.
- Implementation Planning.
- Stakeholders
 - Engagement.

Integration with Existing Practices. Education, Training, & Skill Development. Information Sharing & Collaboration **Among Peers**

Technical Challenges

- BMD Tests Validation
- Testing Procedures & Protocols
- Variabilities
- Database Setup, Collection, Analysis, & Management.
- Pathway for Use in Field Quality Assurance (QA).
- Volumetrics Historical Usage



Be Mindful that...

- Not all states are experiencing every challenge listed.
- All raised challenges are listed, even if only mentioned by few states.

Two present statuses for the challenges:

- 1. The path forward has been identified and implemented.
- 2. Ongoing efforts are in progress to address and find solutions.

Be Mindful that...

Similar challenges are heard from contractors.

- Implementation requires resources.
- Resistance to change.
- BMD tests may not be able to fully replace current acceptance testing.
- Variability in BMD tests results

Source: NAPA

Federal Highway Administration

Management Challenges

- Change Management.
- Cost-Benefit Analysis
- Specifications & Risk Management.
- Resource Allocation.
- Implementation Planning.
- Stakeholders
 - Engagement.

U.S. Department of Transportation Federal Highway Administration

Summary – Major Items

Management Challenges

- Cost-Benefit Analysis
 - Plans that will allow for measurement of benefit
- Resource Allocation
 - Enough resources to implement being worked on by only a few people
- Implementation Planning
 - No overall plan or path with milestones
 - Messaging & motivation goals needed
 - BMD is not a cure all!
- Stakeholder Engagement
 - Workshop was a kicking off point continue with industry
 - Coordination with Contractors to see what they can change and achieve

Technical Challenges

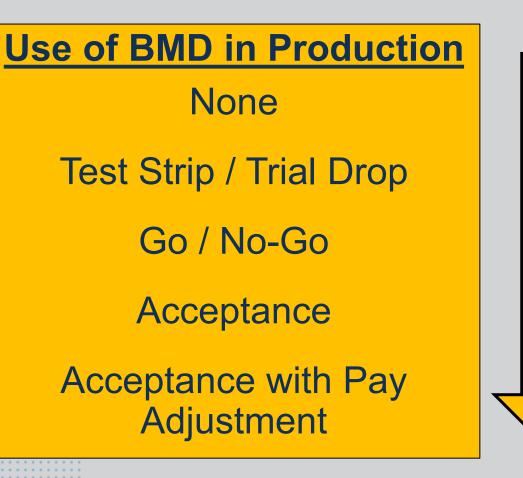
- BMD Tests Validation
- Testing Procedures & Protocols
- Variabilities
- Database Setup, Collection, Analysis, & Management.
- Pathway for Use in Field Quality Assurance (QA).
- Volumetrics Historical Usage

Summary – Major Items

Technical Challenges

- BMD Test Validation
 - Few w/ plan at this point
 - Pavement performance monitoring who to do it?
 - Should reflect the distresses and treatments you are applying it to
- Testing Procedures & Protocols
 - Few established
 - Interlaboratory studies
- Pathway for Use in QA
 - Limitation of BMD without including in Acceptance.
 - Handling, conditioning, contractor making samples, silo storage time
 - Concerns about how to integrate and what to do to effectively put into the field

Volumetrics Usage


• Variable approaches to volumetrics due to changes in conditions / production

BMD in Quality Assurance?

- Majority of DOT's want to integrate BMD into field production *eventually*....
 - If these tests relate to performance better, why not use them?
- What does the use of BMD tests in QA look like?

U.S. Department of Transportation
Federal Highway Administration

5

ICre

as

Б

()

ifficulty

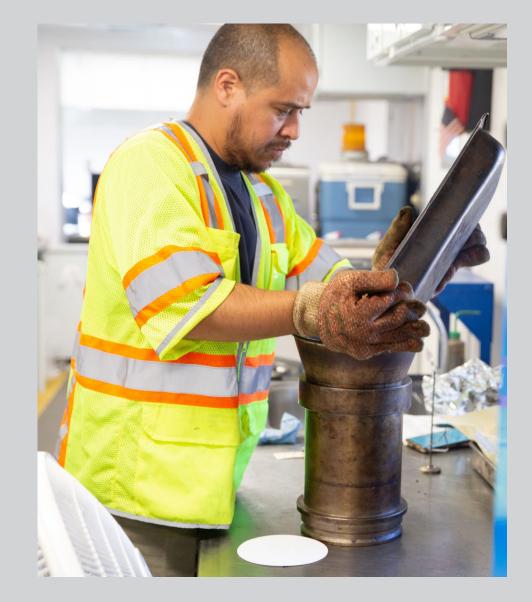
19

Office of Innovation Implementation

BMD tests are different...

- Longer time to sample, fabricate, and test
 - More significant effort to prepare and fabricate specimens
 - May be challenging to keep current sample frequencies
- More significant within-lab and between-lab variabilities
 - Lack of established precision & bias statements

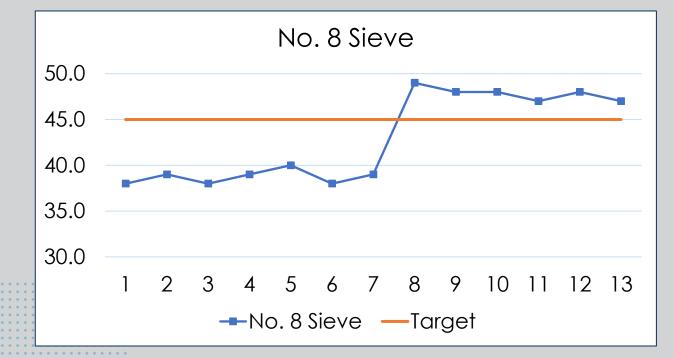
Variability erodes confidence in results
Wider range of typical resulting values

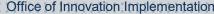


U.S. Department of Transportation Federal Highway Administration

Challenges / Questions

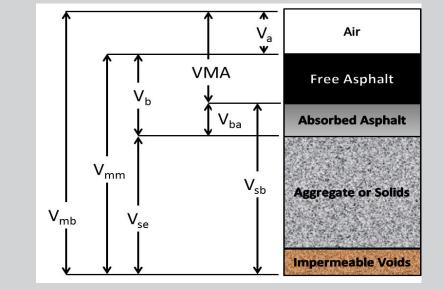
- Need for an aging protocol to shorten test time and establish new thresholds so test is applicable during production.
- Need for a greater frequency of sampling for BMD mechanical tests. Testing frequency and lot size has been a major challenge.
- Finding surrogate BMD tests that will provide quicker turnaround of test results for QA.
- Assigning BMD test results weight factors for pay factors.
 - What BMD tests and weight factors should be used along other volumetric properties?
 Should same weight factor be used for cracking and rutting tests?

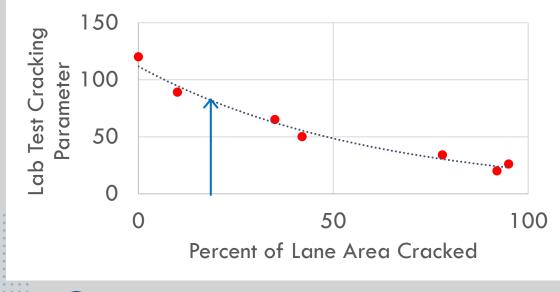



U.S. Department of Transportation Federal Highway Administration

Challenges / Questions

- Fear that the focus is too much on BMD tests for pay and lose sight of production control in terms of consistent production, raw materials, and plant operations.
- Cannot have Quality without Consistency


U.S. Department of Transportation Federal Highway Administration


Challenges/ Questions

- Confidence in BMD tests.
- Are mechanical tests run through BMD enough to control consistency without volumetric properties? What other parameters can be used to control consistency?
- Can the role of volumetric properties in the mix design and acceptance stage be different?
- Which volumetric properties to use?

Which criteria to relax? and by how much?

Lab to Field Correlation

U.S. Department of Transportation
Federal Highway Administration

Current BMD Practices in QA

• Numerous states use tests with go / no-go criteria in production

- LA: Hamburg Wheel Tracker every 10,000 tons
- IL: Hamburg Wheel Tracker and I-FIT shutdown after two failing tests
- VA: Numerous tests for production starting in 2024
- TX: Overlay Test and Hamburg Wheel Tracker once per project (can require removal in-case of Hamburg)
- Some using BMD tests with pay adjustments
 - MT: Hamburg Wheel Tracker with potential rejection
 - NJ: Overlay Test and Asphalt Pavement Analyzer for specialty mixtures
 ME: Hamburg Wheel Tracker once per lot, QC testing required

U.S. Department of Transportation Federal Highway Administration

Management Challenges

- Change
 Management.
- Cost-Benefit Analysis
- Regulatory
 Compliance & Risk
 Management.
- Resource Allocation.
- Implementation Planning.
- Stakeholders
 Engagement.

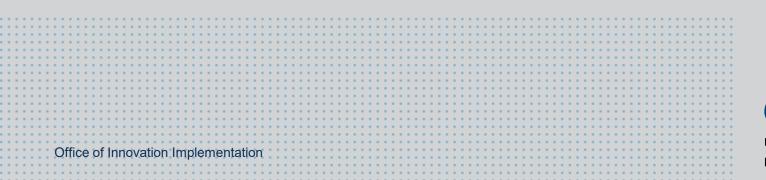
Integration with Existing Practices. Education, Training, & Skill Development. Information Sharing & Collaboration **Among Peers**

Technical Challenges

- BMD Tests Validation
- Testing Procedures & Protocols
- Variabilities
- Database Setup, Collection, Analysis, & Management.
- Pathway for Use in Field Quality Assurance (QA).
- Volumetrics Historical Usage

S. Department c

U.S. Department of Transportation Federal Highway Administration



Ongoing BMD Activity

BMD Implementation Working Group

Focus on the 'next level' of BMD

- Dwell & lag time impacts
- Impact of specimen preparation
- What existing standards are 'covered' by BMD and which aren't
- Mix adjustments

U.S. Department of Transportation Federal Highway Administration

U.S. Department of Transportation Federal Highway Administration Wrap-Up U.S. Department of Transportation Federal Highway Administration

O
 O
 Federal Highway Administration
 RESOURCE CENTER
 O
 O
 O
 O
 O
 O

Constraints
 Constrain

BMD Case Studies -Virtual Workshop

- https://www.fhwa.dot.gov/pave ment/asphalt/
- https://www.fhwa.dot.gov/pave ment/asphalt/pubs/20210722 bmd workshop flyer 508c fin alv3.pdf
- Contact Derek Nener-Plante

derek.nenerplante@dot.gov

Now offered In-Person!

2 U.S. Department of Transportation Federal Highway Administration O O O O RESOURCE CENTER Balanced Mix Design (BMD) Case Studies Virtual Workshop: Moving Forward with Implementation Description This free Federal Highway Administration (FHWA) workshop

will provide State DOTs with knowledge on how to get started and/or move forward with the implementation of BMD as learned from in-depth case studies of key State DOTs. It is customized to a State DOTs current situation with its BMD implementation program This unique workshop includes providing managers and practitioners

- a. the overall BMD process and its benefits;
- b. the planning and activities needed for the selection, evaluation,
- and implementation of performance tests for routine uses in a BMD c. positive practices and lessons learned by key State DOTs.

The workshop will focus on a BMD implementation process that was developed and conducted from in-depth case studies of key

Outcomes

- Upon completion of the workshop, participants will be able to: Understand the overall benefits of BMD,
- Recognize the planning and coordination effort associate with the
- Identify the tasks that need to be completed for the development and
- Recognize successful key State DOTs practices and experiences
- Recognize available external technical information and support.

Register Today Contact Derek-Nener-Plante at derek nenerplante@dot.gov

U.S. Department of Transportation **Federal Highway Administration**

28

Office of Innovation Implementation

Length

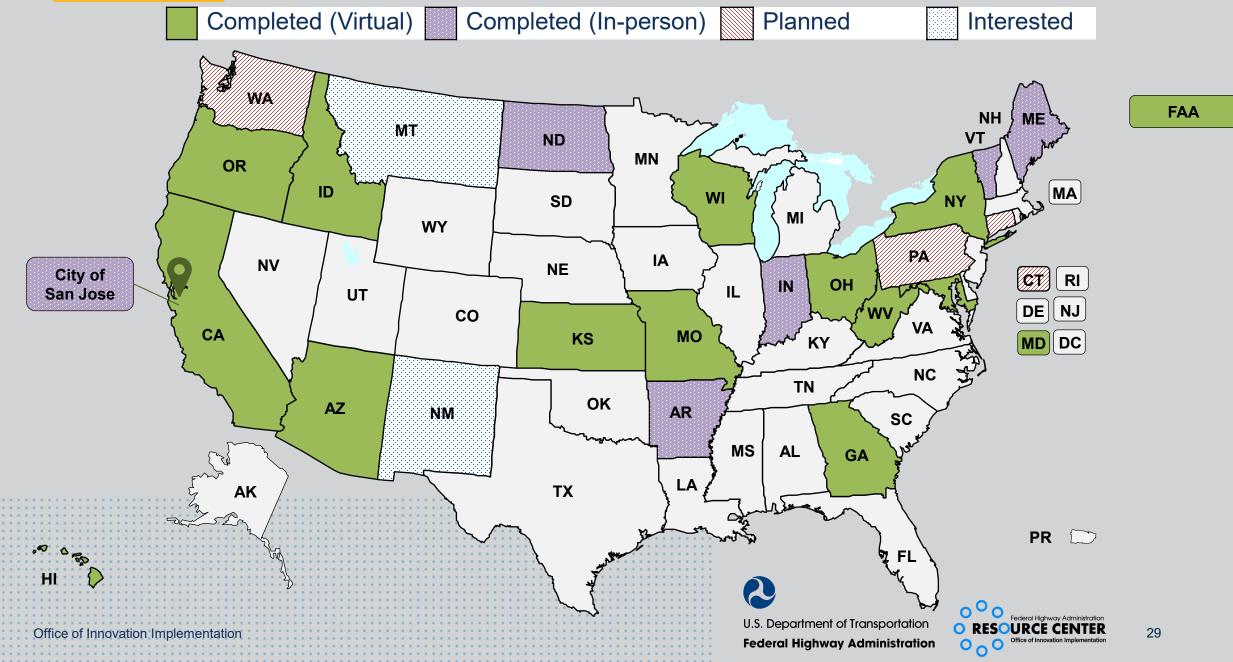
The workshop is a total of six hours and will include multiple segments with a maximum of three hours per segment. The workshop can be delivered over the course of several days.

The free virtual workshop will be

delivered using Microsoft Teams or

any other virtual meeting platform

accepted by a State Department of


Target Audience

E Location

Transportation (DOT).

The successful implementation of BMD will need to be a team effort. Thus, the target audiences for the workshop are managers and practitioners interested in the implementation of BMD from State DOTs, industry, academia, and consultants. This involves participants from various offices of a State DOT, such as materials, pavement design, construction, and avement management

FHWA Balanced Mix Design Case Studies Virtual/In-Person Workshop

U.S. Department of Transportation Federal Highway Administration

Questions?

Thank you for your attention!

Derek Nener-Plante Pavement and Materials Engineer <u>derek.nenerplante@dot.gov</u>

ASTEC[™]

Asphalt Plant Efficiency

BUILT TO CONNECT

Missouri Asphalt Pavement Association

February 2024

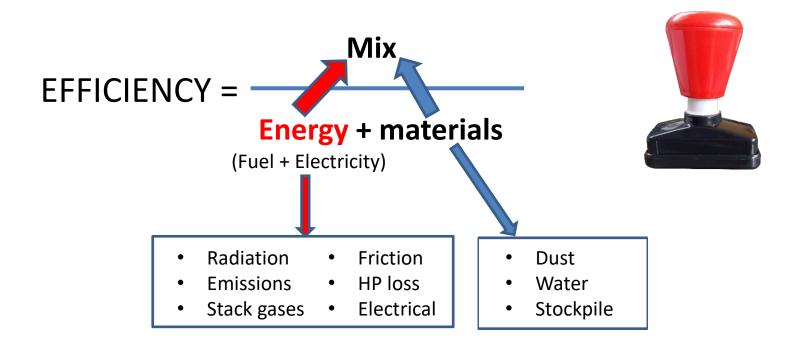
Greg Renegar

From concept to action

- Preached efficiency far and wide
- Operators, foreman, area managers
- Has behavior changed?
- Goals vs. rules
- Make a list of operation rules as we discuss plant efficiency
- Goals rules habits culture
- Culture of profitability


EFFICIENCY - Used to describe many things

The Goal – To think about asphalt plant efficiency differently– to make good decisions

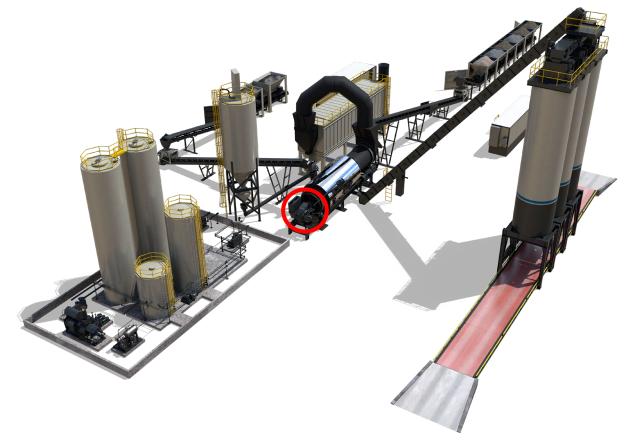

EFFICIENCY = What you get What you give

DEFINING "EFFICIENCY"

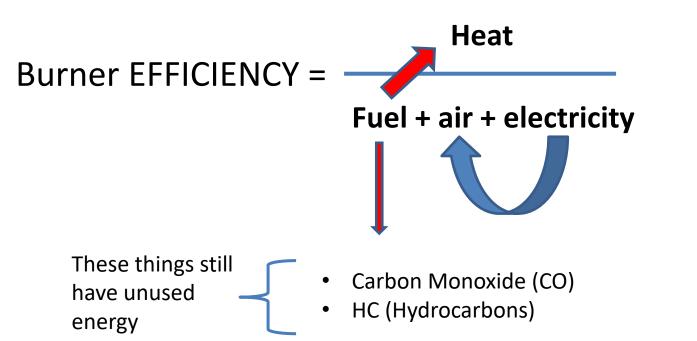
Different "Categories" of Efficiency 🔥 ASTEC

Component efficiency (burner)

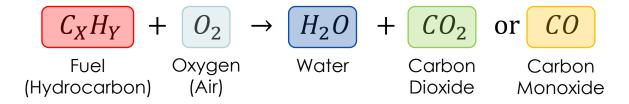
System efficiency (burner + dryer + baghouse)

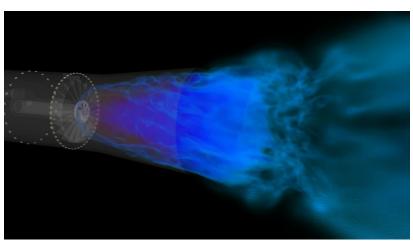

Plant & operation efficiency

You could have good component and system efficiency...


And have a less profitable plant!

Component Efficiency


DEFINING Burner "EFFICIENCY"



Component Efficiency – Burners

Can tuning make your burner more "efficient"? Yes but...

Agreeing on a definition for "efficiency" is absolutely critical!

What about excess air?

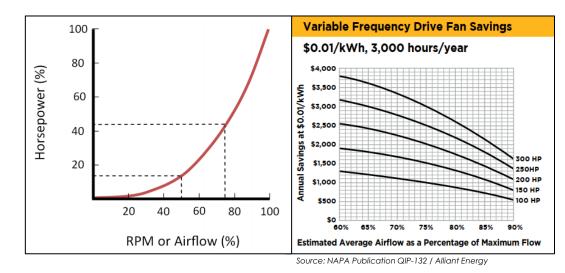
- What is it?
- Why is it required?
- How much is needed?
- What if there is too little? Too much?
- Are all burners the same?
- How do you tell if too much excess air?
 - Gas analyzer not so fast...
 - Out of baghouse cfm at a low production rate
 - Excessive dust carry-out

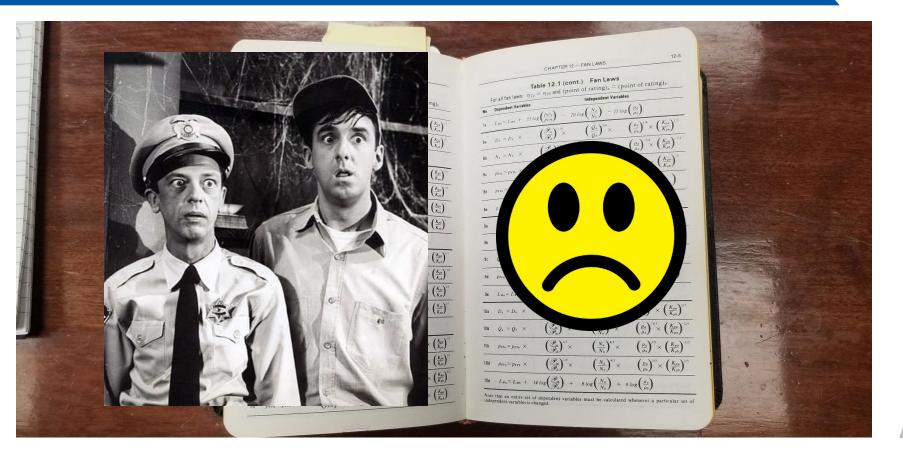
Burner technologies

TOTAL AIR BURNER

OPEN-FIRED BURNER

- Which is better?
- Total Air don't oversize the burner !
- Total Air with VFD really wins
- Does it "move the needle" or is it a baby-step?


Component Efficiency – VFD

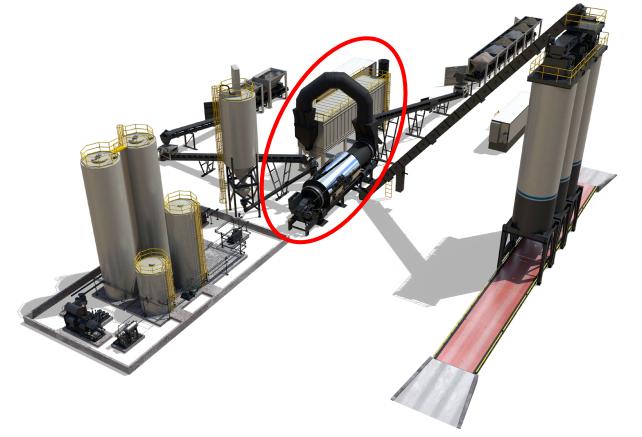

Variable Frequency Drive (VFD)

- Fans: Can save a lot of energy compared to a damper
- Drum: Helps keep energy loss down
- Drag: Reduces wear

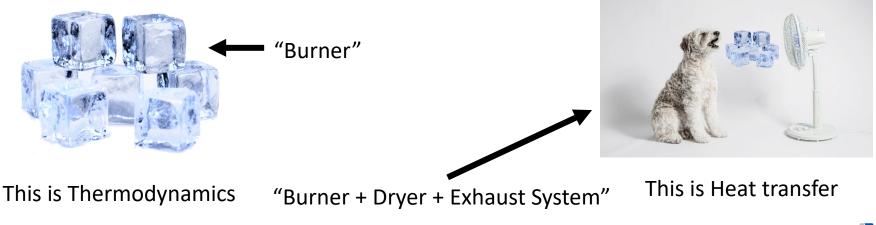
Fan Laws

What are VFDs good for?

- Energy savings:
 - Baghouse exhaust fan (80% speed = 50% energy)
 - Burner fan (50% speed = 12.5% energy)
 - Much less noise happier workers and neighbors



STEC



System efficiency

- Good burner performance doesn't necessarily equal good heat transfer – WHAT ?!?!?
- How can this be so?
- The burner, dryer, and baghouse comprise a **System**
- The components must be **matched** and **work together**
- Remember: Manning didn't win the Championship

The Difference between thermodynamics and Heat Transfer

- Thermodynamics is how much energy (heat) is needed
- Heat transfer is how the heat is delivered to where it is needed

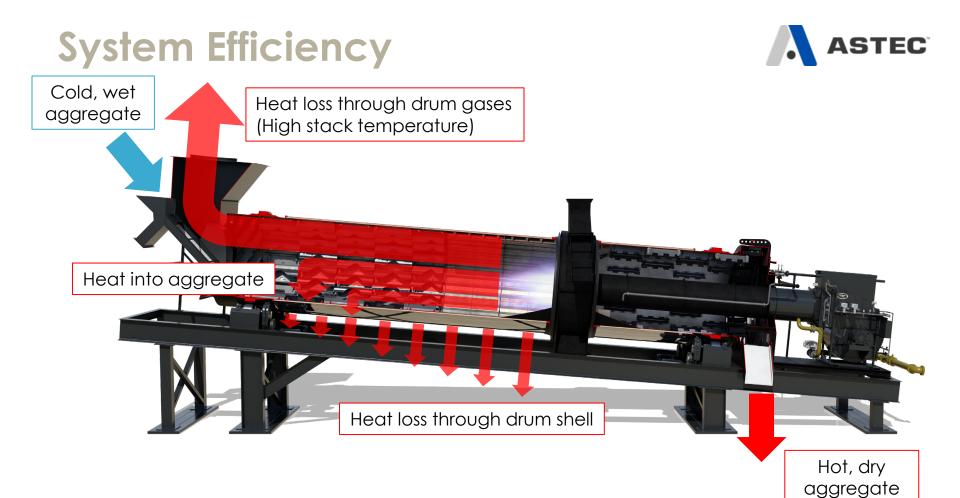
System Efficiency

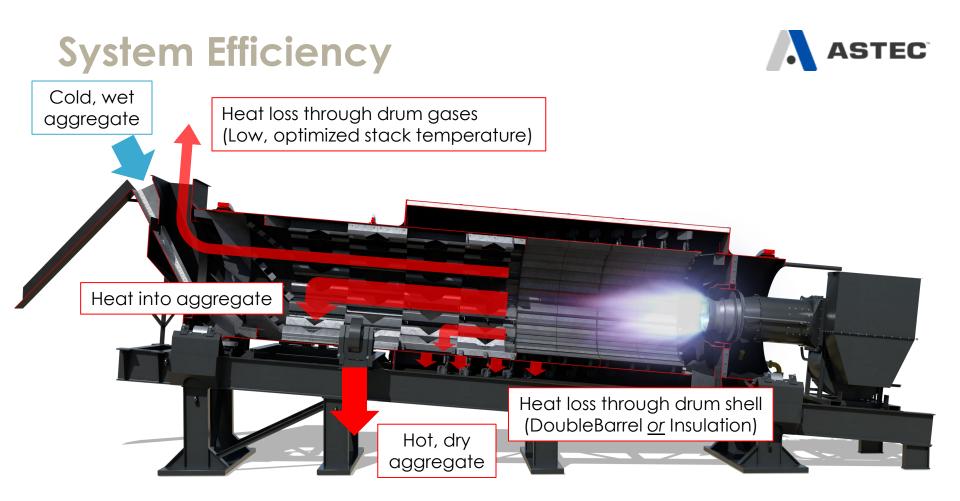
Suppose we have two plants...

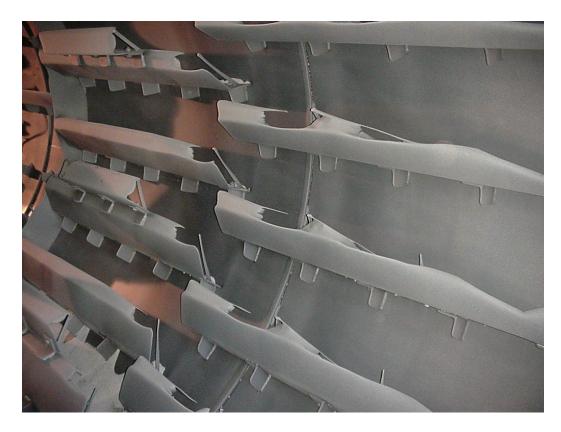
- Same mix
- Same aggregate and RAP source
- Same mix temperature
- Same production rate
- Same moisture contents
- Same fuel
- Same burner

What number on the console indicates which plant is drying more "efficiently"?

(Which plant has more heat going into the aggregate?)

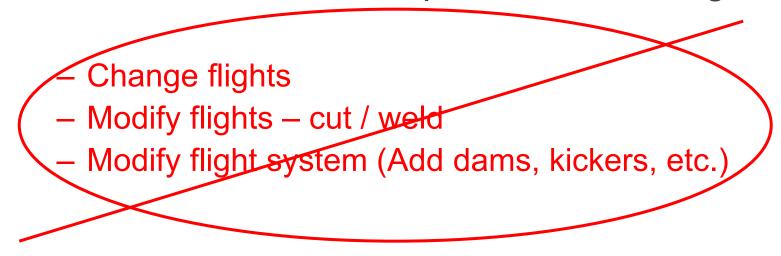






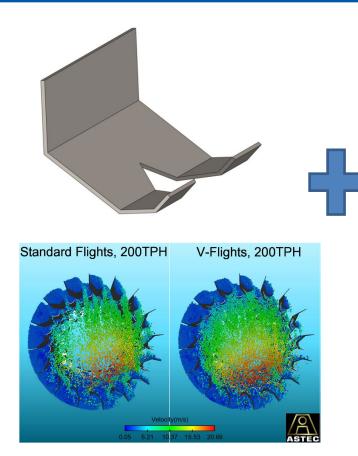
STACK TEMPERATURE!

Drum flighting and EFFICIENCY



Do these flights veil properly? Probably not, but it depends

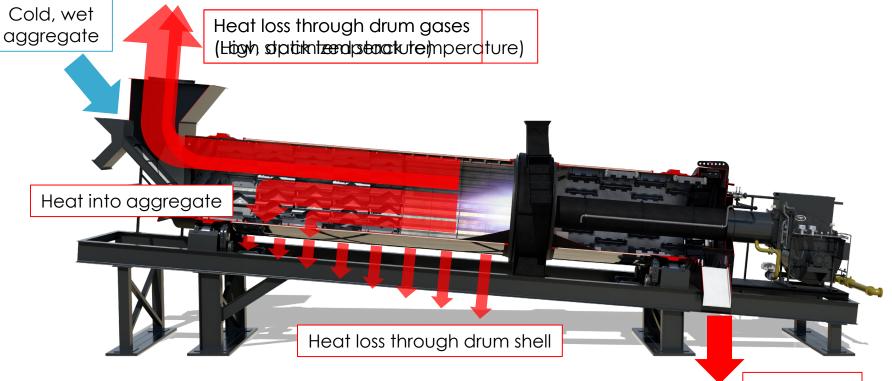
Maintenance Affects Efficiency!


Stack Temperature Control

How can the stack temperature be changed

Press a button in the control house – V-Pac

V-Pack[™] Stack Temperature Control



VFD and Controls

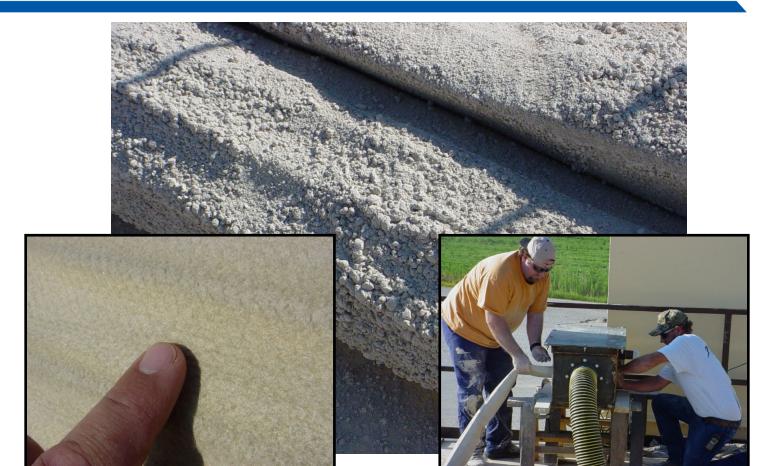
The VFD changes the drum speed. Controls determines how much.

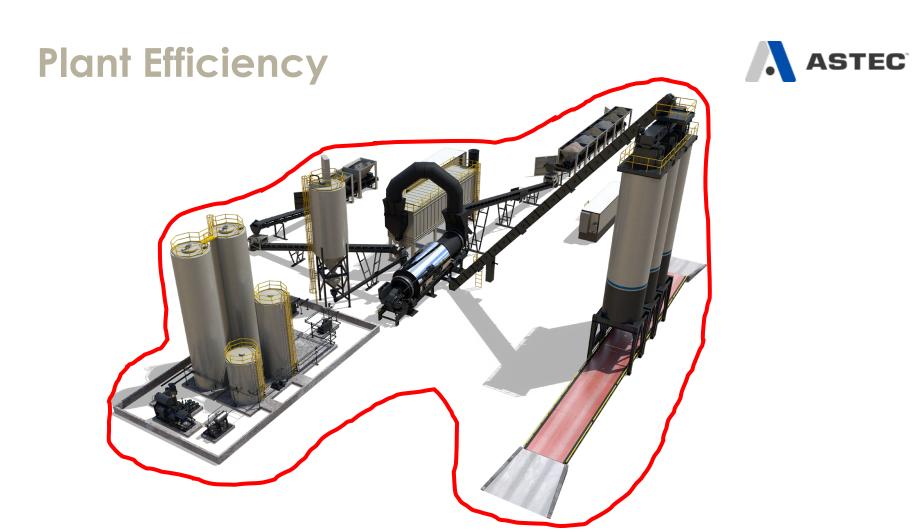
Hot, dry aggregate

Stack Temperature Effect on Production

60F = 10% production

4% effect on fuel required

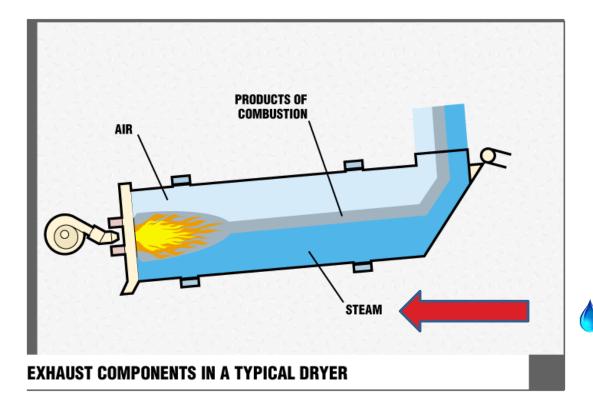

60-10-4



Stack temperature

- How low is too low?
- What is the dew point?
- Bad things can happen if you go too low
- mudding on the bags won't pulse off high delta P low tph
- Plug up augers hopper full of dust plant down
- Corrosion

High Baghouse ΔP



52% of Fuel is Required to Process the Water

1% change in moisture = 11% Reduction in Fuel Consumption

1-11-11

HOW DOES MOISTURE AFFECT PLANT CAPACITY?

As water turns to 240 F steam it expands 1747 times.

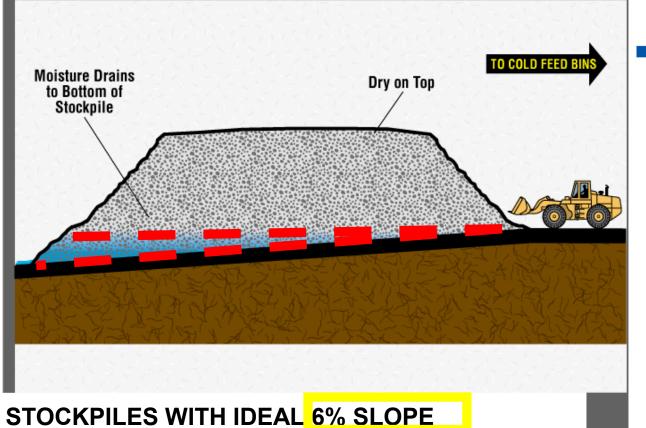
That is why a small percentage of water makes a big difference to the exhaust system.

Moisture matters!

1-11-11

1% Moisture = 12% production

Plant Efficiency – Moisture



Good stockpile management practices can have an oversized effect on plant efficiency.

- Slope & Pave
- Cover (sometimes)
- Load from the dry material

A 2% reduction in moisture can reduce the burner energy requirement by 21%*.

Stone Screenings – A

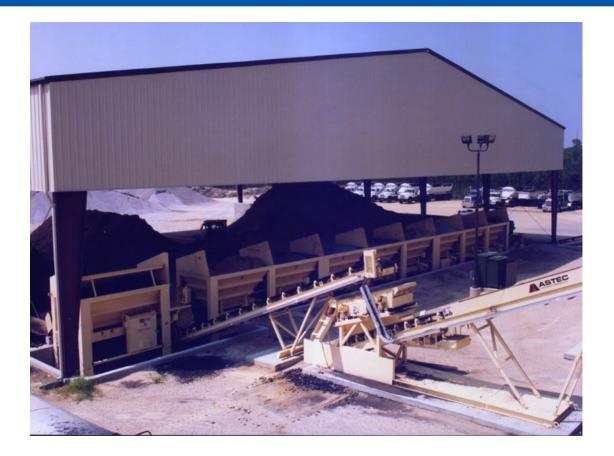
2.4% less up 12"

Stone Screenings – B

2.3% less up 12"

Natural Sand

4.2% less up 12"



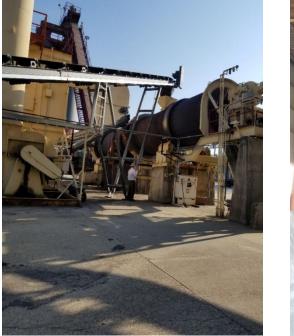
3/8" (9.5mm) Stone

(1% less up 12")

Cold feed bins covered too

Material inside and outside

Feed bin rain covers - Australia

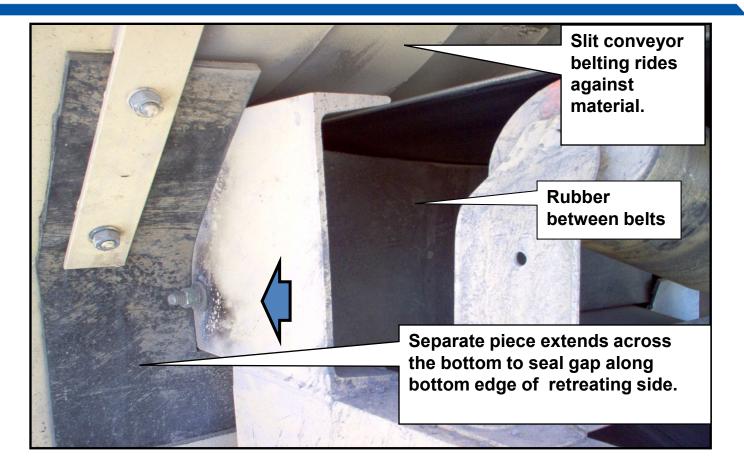

Cold Feed bin covers – Colombia, South America

High operational Efficiency trumps component / system efficiency

Parallel flow drum mixer (obsolete high stack temp)

Old burner technology

Low component / system efficiency – High plant efficiency

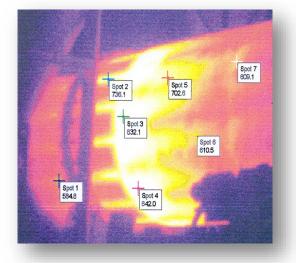

Air Leakage – Drum inlet chute

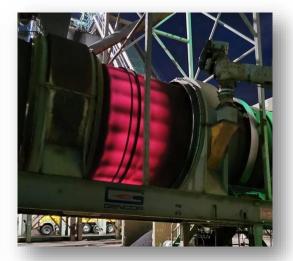
-57 1 - Ale

Drum inlet chute seal made from conveyor belting

Air Leakage – Slinger conveyor to drum

To insulate or not, that is the question!



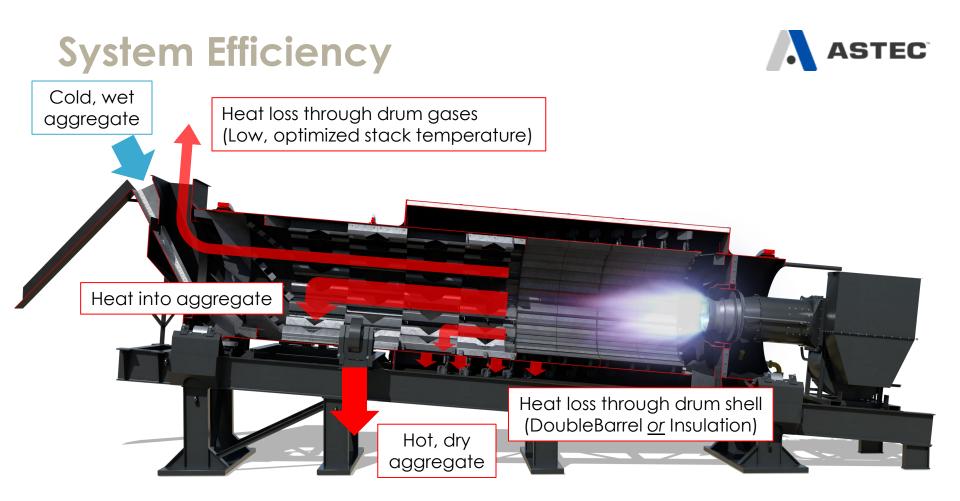

Everything that gets hot besides the mix is a waste of energy, but what does it make sense to insulate?

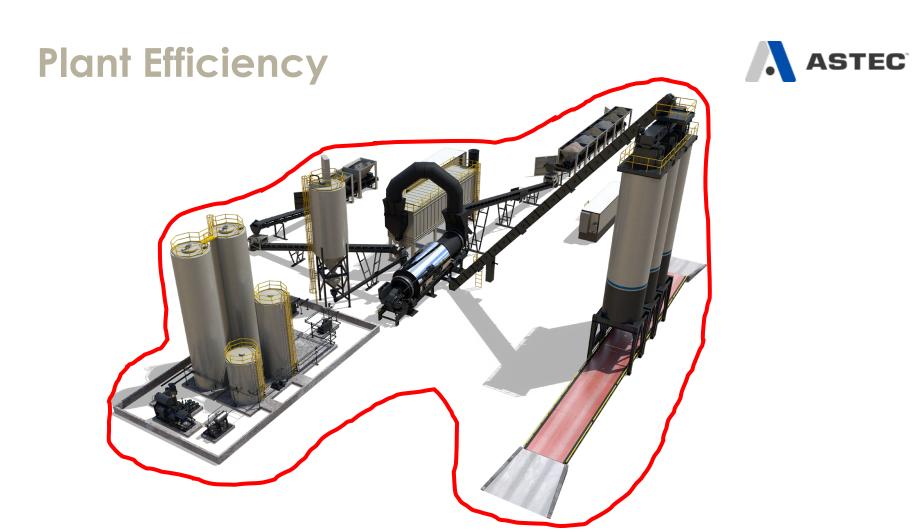
Insulating Your Plant

- Dryer drum
- Duct work
- Baghouse
- \rightarrow Insulate?
 - \rightarrow Worth the effort?
 - \rightarrow Lots of surface area

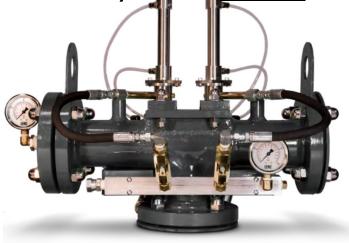
Insulating Your Plant

- AC tank farm \rightarrow Yes!
- AC piping \rightarrow Yes!
- Pipe flanges \rightarrow Yes!


Jacketed Asphalt Piping								
Asphalt Pipe Nominal Size	Hot-Oil Jacket Nominal Size	Loss Per Linear Foot BTU Per Hour		Loss Per Flange BTU Per Hour				
		Un-insulated Jacket	Insulated Jacket	Un-insulated	Insulated			
3 inches	4 inches	1598	86	1890	120			
4 inches	6 inches	2349	122	2600	134			
5 inches	8 inches	3057	148	3240	178			


	Hot Oil	Piping		
Pipe Diameter	Loss Per Linear Foot BTU Per Hour		Loss Per Flange BTU Per Hour	
	Un-insulated	Insulated	Un-insulated	Insulated
1-1/2 inches	676	47	1205	97
2 inches	846	54	1660	115
2-1/2 inches	1024	55	2155	125
3 inches	1243	72	2485	130

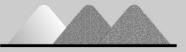
This will become more important as producers look to pick all the "low hanging fruit"


Source: NAPA Publication QIP-132 & Astec Technical Paper T-140

Plant Efficiency – Mix Temperature 🔥 ASTEC

Pick a Warm Mix technology (mechanical or chemical) **and <u>sell it</u>!**

A 50° F reduction in production temperature can reduce fuel consumption by 11%*


RAP - \$\$\$\$\$\$

30,000 Tons of RAP

0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 סד-וסרס סד-וסרס סד-וסרס סד-וסרס סד-וסרס 0-0-00 0-0-00 0-0-00 0-0-00 0-0-0 0-10-10 0-10-0 0-10-10 0-10-10 0-10-10

70 - 6,000 Gallon Transport Trailers and 28,200 Tons of Clean Aggregate

RAP is Worth the Virgin Material It Replaces

Which plant is more profitable?

Old Technology

- Starts at 6am loading out of prefilled silos
- Starts up at 8:30am
- Runs 2 to 3 mixes, has enough trucks
- Runs ALL DAY (changeovers, no mid-streams)
- Fills the silos at end of day

New Technology

- Starts at 6am making mix
- Runs 2-3 mixes on various jobs, short of trucks
- Mid-streams at 8:30 for 45min
- Runs another 300 tons (finished for the day)
- Cleans out
- Gets a call at 10:15am for a 150ton parking lot job for afternoon.
- Fires back up at 11:00am
- Runs 147 tons, then midstream while paving foreman figures the last bit needed.

Plant or Operation Efficiency

Surge and Storage

How does silo use affect plant efficiency?

Plant Efficiency – Operations

 Plants that start and stop more than 3 times per shift use up to 20 - 35%* more fuel

The solution: Storage silos. Operate your continuous plant...<u>continuously!</u>

"Reasons" Not to Store Mix

- Lack of planning. "I never know what mix we are going to need tomorrow."
- Mix temperature loss
- Mix not coming out of the silo
- Internal moisture effects (temperature, "brown out")
- Fear of storing polymer

Reasons to Store Mix

- Can get the first round of trucks out even if there is a breakdown. (95% of break-downs occur at start-up)
- The plant crew doesn't have to come in as early. (reduced labor cost). Less work in the dark safety.
- The plant crew doesn't have to stay late waiting for the "last load". Send everyone home but the load-out person.
- More time for maintenance. Increases up-time.
- Can fill silos in the afternoon for night work. Depending on storage capacity and the mix required, only a load-out person might be needed.
- Less likely to have a night job break-down.

Reasons to Store Mix

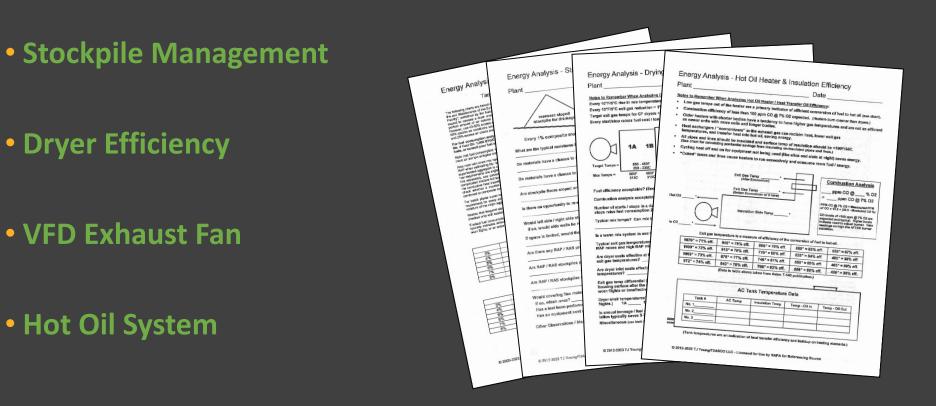
• Storage in multiple silos plus planning allows FOB customers to get in and out quickly in the morning.

• Serving the FOB customers better than your competition will result in more business.

Operate for Efficiency & Profitability 🔥 ASTEC

- Run a continuous plant continuously as much as possible
- Maximize the percent RAP the right way (equipment and best practice)
- Minimize mix temperature Choose WMA technology, sell tech to customers, measure and manage
- Manage moisture content Slope and pave under wettest stockpiles if in wet climate
- Use storage silos as part of business plan Know what is needed the next day
- Minimize waste mix Measure, train, manage (report)

Production Strategies for Saving Money and Reducing Emissions


List of Topics Covered

- Mix Temperature
- Moistures
- Flighting/Exit Gas
- Insulating Drum
- Burner Tuned
- Alternative Fuels
- Production Start/Stops
- Production Rate

- Hot Oil System
 - Design
 - Fuels/Electric
 - Efficiency/Exit Gas
- Storage Tanks
- Pipes/Valves
- Peak Load/Demand
- VFDs
- Equipment Idle Shut-off

Self Audit Worksheets

ABOUT ASTEC

- Based in Chattanooga, TN USA and founded in 1972
- Unique vision to bring state-of-the-art technology to traditionally low-tech industries
- Built on the legacy of putting customer service first.
- Market-leading brands have become a global leader in the manufacture of equipment from Rock to Road.

ASTEC ADVANTAGE CONSTRUCTION

- Experienced construction team
- Structural installation- Asphalt and Concrete
- Mechanical and electrical
- Astec crane and certified operators
- Industrial Piping
- Field repairs and rebuilds
- Weld/Fit/Fab
- Project management
- Plant moves dismantle and assembly
- Dedicated site Supervision on large jobs
- Competitor's equipment

ASTEC ADVANTAGE PARTS EQUIPMENT

Support 24/7/365 Phone – Live Person On staff parts engineers OEM and competitive parts Largest Inventory in our industry

Fastest response to

Coverage Global Footprint Global Coverage In Region Territory Managers

Resources/Experience

Large experienced team dedicated to serve

Unmatched experience and knowledge

New Product Development Team

ASTEC ADVANTAGE SERVICE

Field Service Response Time

 36 hours or less on general request, 24 hours or less on plant breakdowns and emergencies

Support 24/7/365

- Phone and Internet Support
- Call logging and tracking
- Robust rotation for after hours support
- Zero cost to the end user

Resources/Experience

- 110+ Service Team dedicated to field services
- Multiple mechanical/electrical engineers and computer programmers included in our staff

Training

- Customer schools
 and training
- Customer site training
 Inspections and
 Assessments
- Plant or Component
 Inspections and
 assessments

ASTEC

 Silo Inspections (Silobot)

CUSTOMER TRAINING AND SCHOOLS

Campus Training and Schools

- HMA and Concrete Schools at Jerome Campus
- 9 weeks
- Hands-On
- Instructors are subject matter experts –engineering, service, and etc...

Customer Site Training and Schools

- Classroom and Plant site training
- Customize your curriculum and days of training
- Includes competitors' equipment

ASTEC[™]

Greg Renegar grenegar@astecindustries.com

Silos: Surge and Storage

ASTEC INDUSTRIES, INC.

Surge Bins and Silos

"The <u>one</u> thing that has changed the industry more than anything else."

Imagine a world without

INVENTORY

What if you were the only one with inventory?

Benefits of Surge Bins and Silos

• Allows plant to keep running

• Allows for different mixes to be stored

Cost Categories

- Material
- Plant

Trucking

• Paving

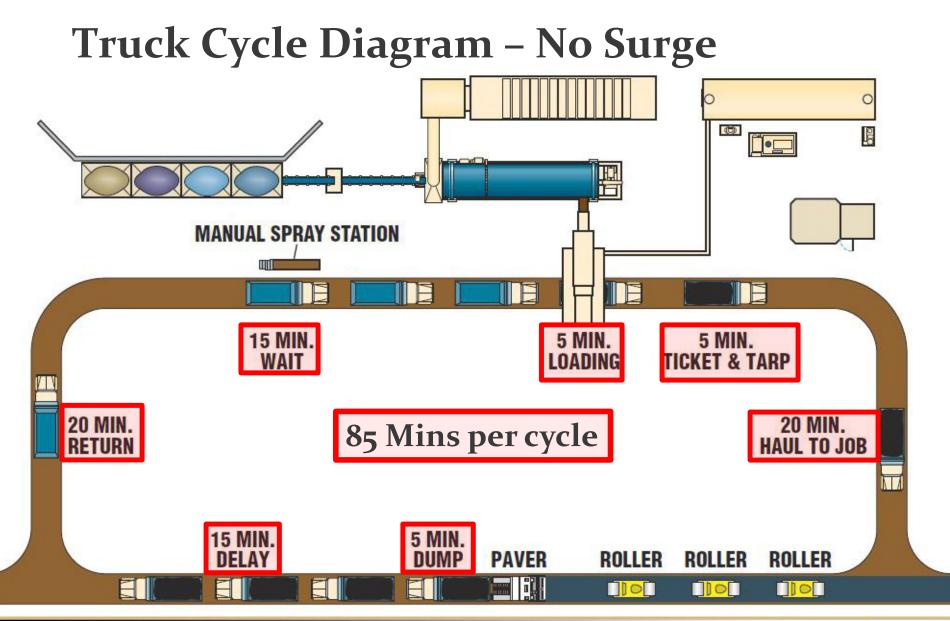
Increased Trucking Cost Caused By:

- Higher fuel cost
- Higher equipment cost
- Higher fuel tax
- Higher license fees
- Higher labor cost
- Higher insurance cost
- Traffic congestion

How many of these do you control ?

Truck "Qualities"

- Requires a driver
- Requires fuel
- Requires maintenance
- Cost \$/hr whether hauling mix or not
- Difficult to control once they leave the plant
- Trucks tend to bunch up
- Breaks automobile windshields
- Loading and unloading technique affects mix quality
- Wears out
- Can pull under the wrong silo
- Can be involved in accidents


Silo "Qualities"

- Buy once and will last as long as you are willing to maintain..
- Shows up for work every day
- Doesn't require a "driver"
- Allows plant to run continuously
- Keeps the heat in
- Keeps oxygen out
- Astec silos can store mix for 4 days

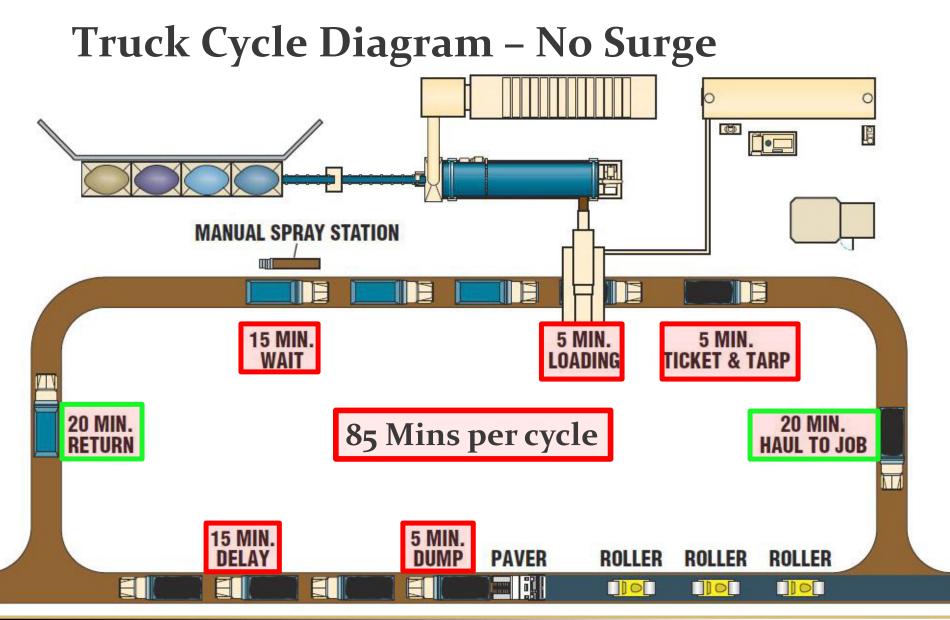
Conclusion: Trucks are bad. Silos are good.

Batch Plant Productivity

240 Tons per hour = 2400 tons per day 20 tons per truck \$60 per hour truck cost (\$1.00 per minute)

85 minutes per cycle * \$1 per minute = \$85 per cycle

 $\frac{\$85 \text{ per cycle}}{20 \text{ tons per truck}} = \4.25 per ton


<u>600 minutes per day</u> 85 minutes per cycle = 7 cycles per truck

 $\frac{2400 \text{ tons}}{20 \text{ tons per truck}} = 120 \text{ cycles}$

 $\frac{120 \text{ cycles}}{7 \text{ cycles per truck}} = 17 \text{ trucks}$

ASTEC INDUSTRIES, INC.

Batch Plant Productivity

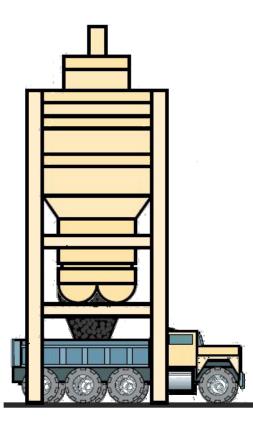
240 Tons per hour = 2400 tons per day 20 tons per truck \$60 per hour truck cost (\$1.00 per minute)

```
85 minutes per cycle * $1 per minute = $85 per cycle
```

```
\frac{\$85 \text{ per cycle}}{20 \text{ tons per truck}} = \$4.25 \text{ per ton}
```

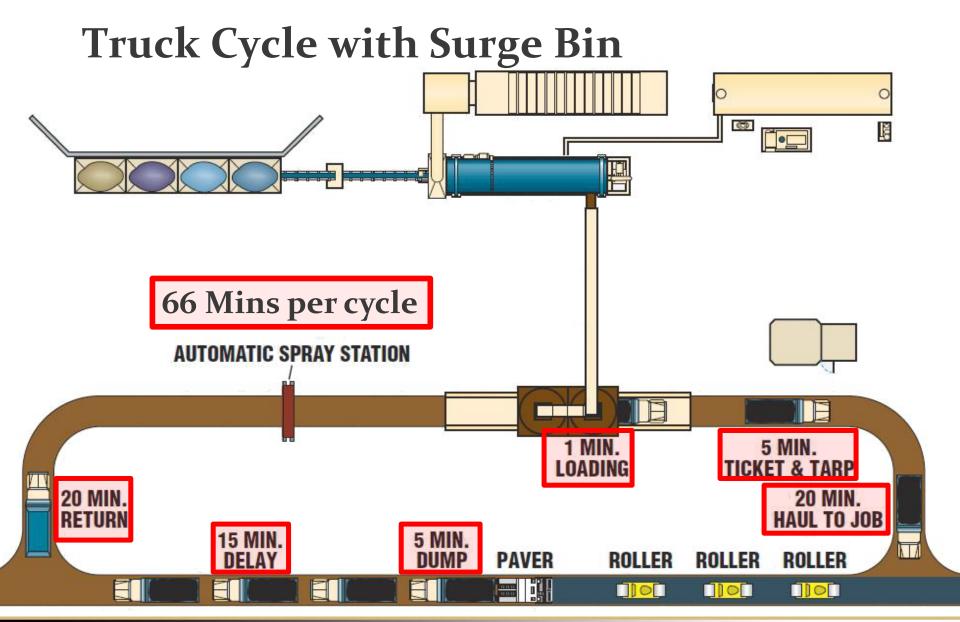
<u>600 minutes per day</u> 85 minutes per cycle = 7 cycles per truck

> 20 min. haul to job + 20 min. return 85 minutes per cycle X 100%


 $\frac{2400 \text{ tons}}{20 \text{ tons per truck}} = 120 \text{ cycles}$

 $\frac{120 \text{ cycles}}{7 \text{ cycles per truck}} = 17 \text{ trucks}$

= 47% Efficiency



Batch Plant – Using Trucks as Surge

Continuous Plant Productivity

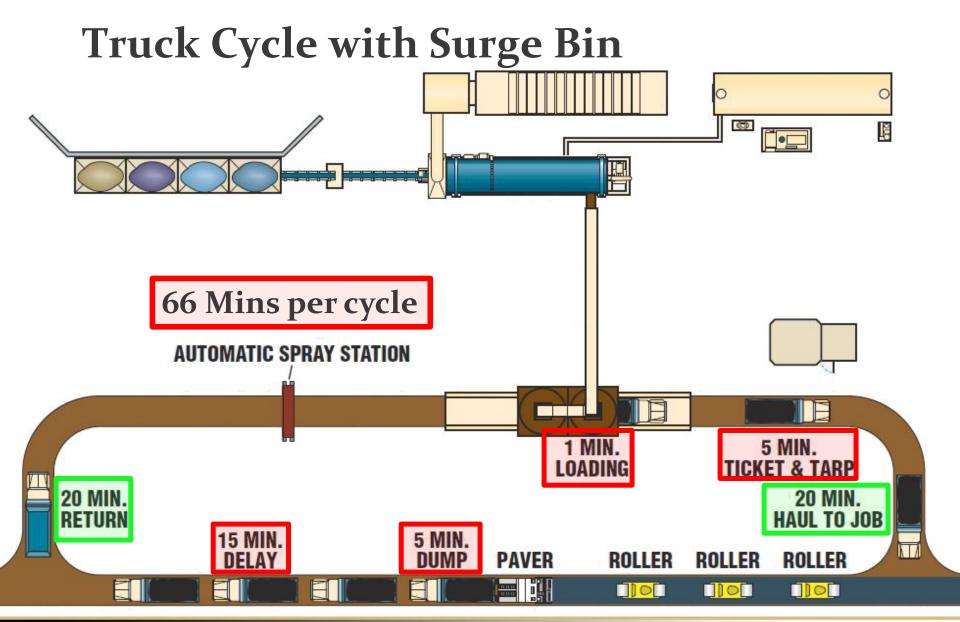
240 Tons per hour = 2400 tons per day 20 tons per truck \$60 per hour truck cost (\$1.00 per minute)

66 minutes per cycle * \$1 per minute = \$66 per cycle

 $\frac{\$66 \text{ per cycle}}{20 \text{ tons per truck}} = \3.30 per ton

<u>600 minutes per day</u> 66 minutes per cycle = 9 cycles per truck

 $\frac{2400 \text{ tons}}{20 \text{ tons per truck}} = 120 \text{ cycles}$


 $\frac{120 \text{ cycles}}{9 \text{ cycles per truck}} = 14 \text{ trucks}$

3 fewer trucks (and fewer repairs, etc.)

23% savings

Continuous Plant Productivity

240 Tons per hour = 2400 tons per day 20 tons per truck \$60 per hour truck cost (\$1.00 per minute)

66 minutes per cycle * \$1 per minute = \$66 per cycle

 $\frac{\$66 \text{ per cycle}}{20 \text{ tons per truck}} = \3.30 per ton

23% savings

<u>600 minutes per day</u> 66 minutes per cycle = 9 cycles per truck

<u>20 min. haul to job + 20 min. return</u> 66 minutes per cycle X 100%

 $\frac{2400 \text{ tons}}{20 \text{ tons per truck}} = 120 \text{ cycles}$

= 61% Efficiency

 $\frac{120 \text{ cycles}}{9 \text{ cycles per truck}} = 14 \text{ trucks}$

3 fewer trucks

Continuous Plant Productivity

240 Tons per hour = 2400 tons per day

21 tons per truck

\$60 per hour truck cost (\$1.00 per minute)

66 minutes per cycle * \$1 per minute = \$66 per cycle

<u>\$66 per cycle</u> 21 tons per truck = \$3.14 per ton

27% savings

<u>600 minutes per day</u> 66 minutes per cycle = 9 cycles per truck

 $\frac{2400 \text{ tons}}{21 \text{ tons per truck}} = 114 \text{ cycles}$

 $\frac{114 \text{ cycles}}{9 \text{ cycles per truck}} = 13 \text{ trucks}$

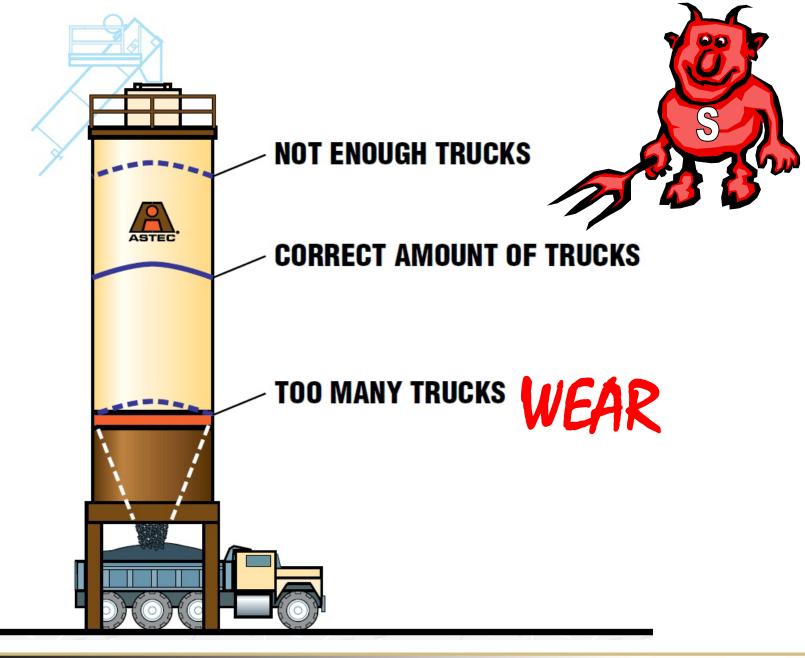
Let's look at the effect of loading one more ton of mix on a truck.

\$3.30 vs \$3.14 per ton trucking cost

\$0.16 per ton of mix

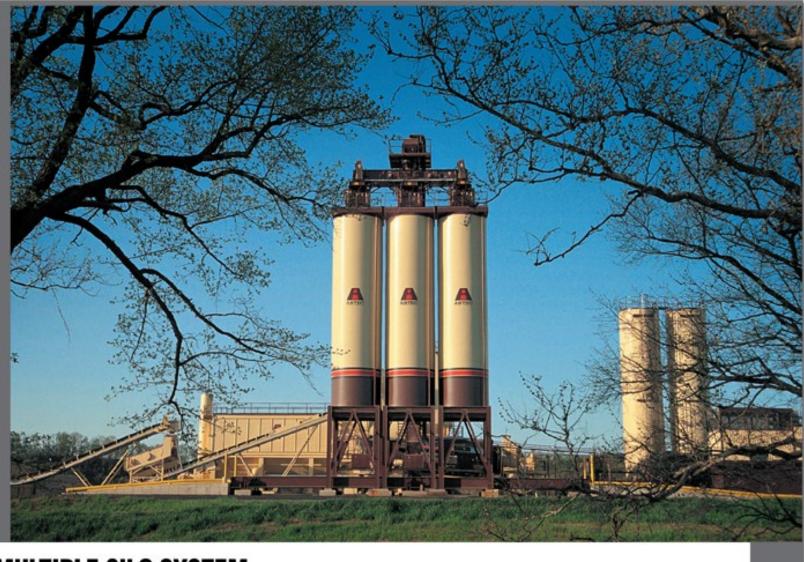
2400 tons x \$0.16 = \$384 per day

That's \$38,400 every 100 days.



Do not over-truck.

Surge vs. Storage



SURGE BIN

MULTIPLE SILO SYSTEM

Feb.9, 2012, Mississippi

- Thursday: Stored mix overnight in an Astec silo
- Friday: Rain
- Saturday: Rain
- Sunday: 25F (-4C) ambient temperature
- Monday: Stored mix
- Tuesday: Paved with no problems.

Laurance Warren: "We don't always communicate very well, but we at least try to know what we need to make for the next day."

"Reasons" Not to Store Mix

- Lack of planning. "I never know what mix we are going to need tomorrow."
- Fear of mix temperature loss
- Fear of mix not coming out of the silo
- Fear of mix oxidation
- Internal moisture effects (temperature, "brown out")
- Fear of storing WMA
- Fear of storing polymer

Reasons to Store Mix

- Can get the first round of trucks out even if there is a break-down. (most break-downs occur at start-up)
- The plant crew doesn't have to come in as early. (reduced labor cost). Less work in the dark.
- The plant crew doesn't have to stay late waiting for the "last load". Send everyone home but the load-out person.
- More time for maintenance. Increases up-time.
- Can fill silos in the afternoon for night work. Depending on storage capacity and the mix required, only a load-out person might be needed.

Reasons to Store Mix

- Storage in multiple silos plus planning allows private customers to get in and out quickly in the morning.
- Serving the private customers better than your competition will result in more business.
- Allows continuous plants to compete with batch plants in a "drug store" market.

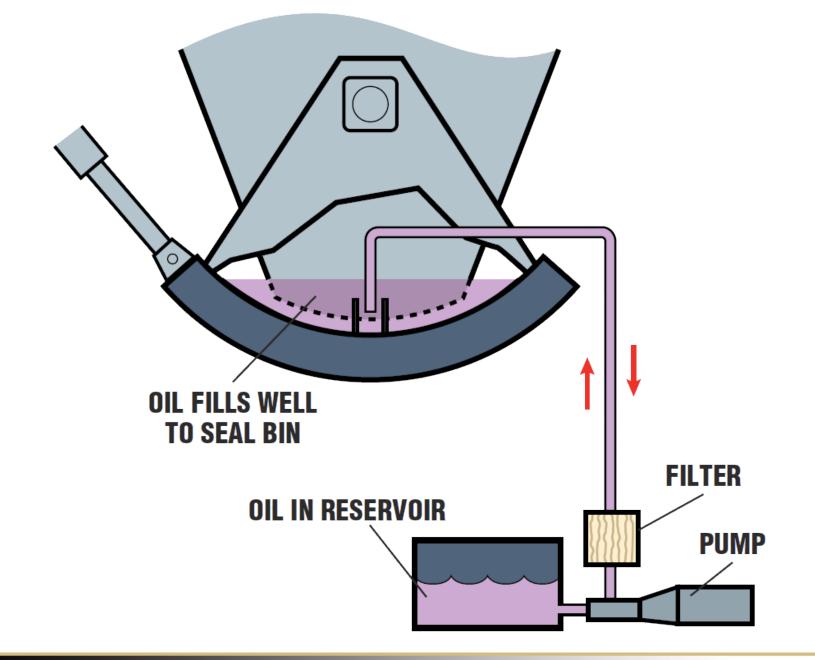
Do use mix storage as a something to do only if you get caught with mix.

Make it part of your business plan.

End every day with full silos.

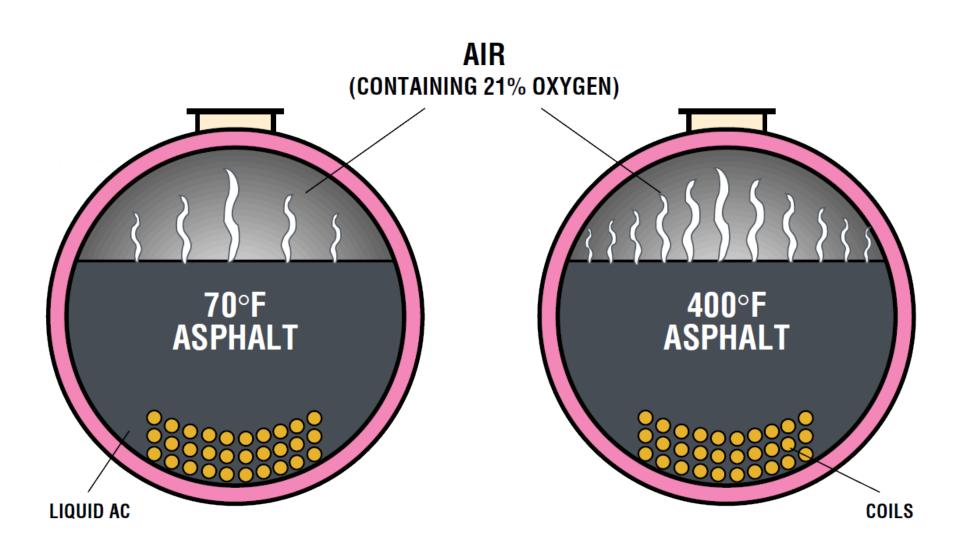
Number One Reason to Store Mix

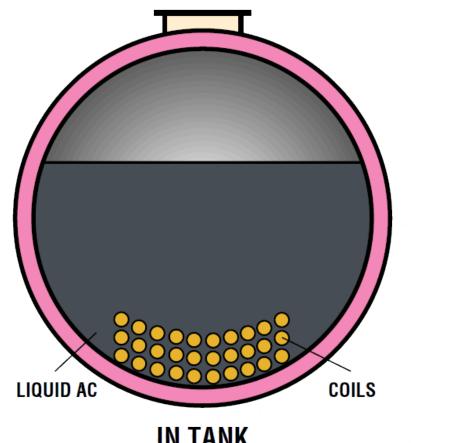
If you have Astec silos and are not storing mix, your plant is not as competitive as it could be.

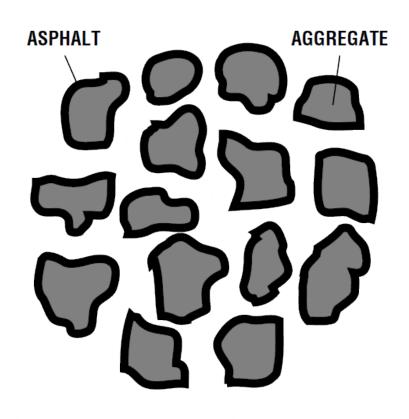


Factors that affect storage

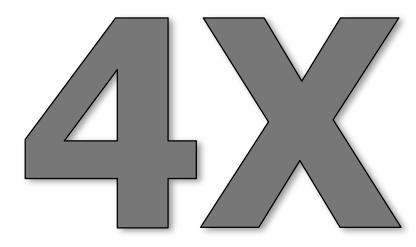
- Time
- Temperature
- Oxygen



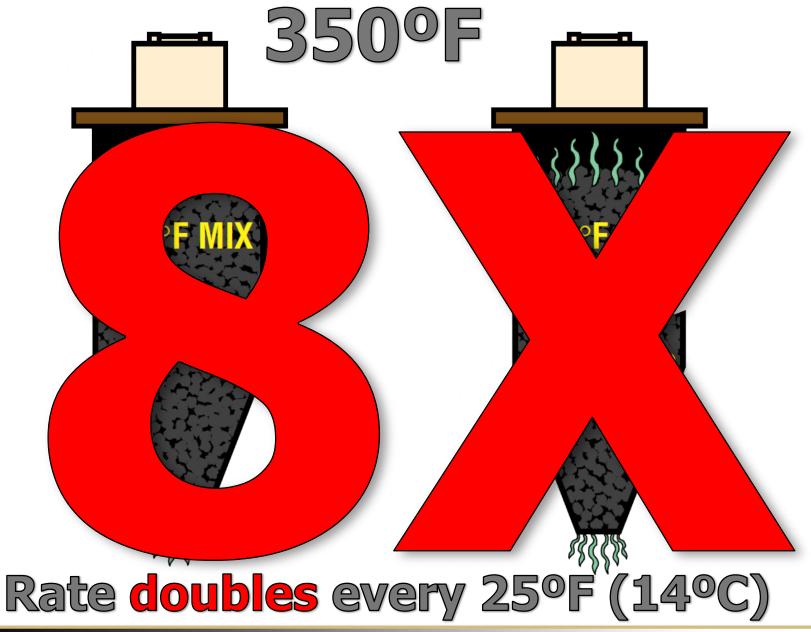




IN TANK (LITTLE EXPOSED SURFACE) IN MIX (LARGE EXPOSED SURFACE)



Compared to 275°F (135°C) mix...



Storage Do's and Don'ts

- Try to fill silo to minimize oxygen.
- Maintain seals on top and **bottom** gates.
- Store mix as cool as possible.
- Be careful with polymer mixes.
- Don't overheat cone.
- Don't store mixes that will drain (SMA).
- Make sure aggregate is dry.

"Silos are the most revolutionary development in plant technology in the last 50 years." Lawrence Warren

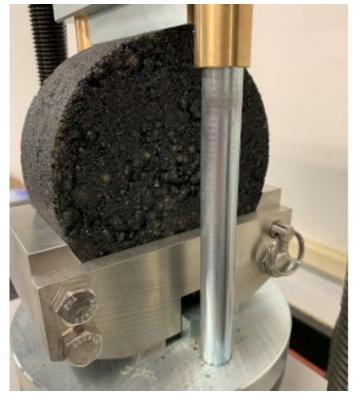
- Silos have allowed continuous plants to be possible.
- Continuous plants can run a high percentage of RAP.

ASTEC.

Black to the Basics

What is Balanced Mix Design?

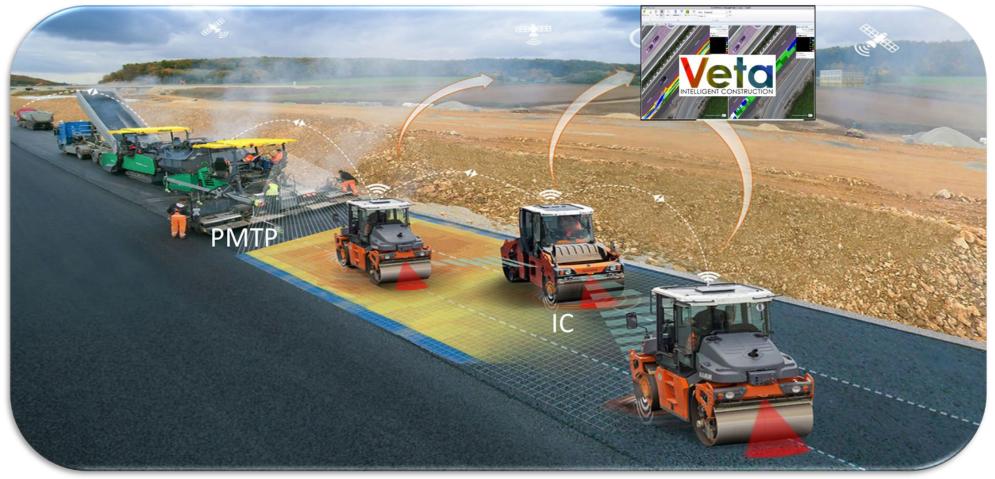
TOO STIFF


TOO SOFT

BMD Performance Testing

Ideal-RT – Rutting Potential Ideal-CT – Cracking Potential TSR – Stripping Potential

TSR – Stripping Potential



Rapid Shear Rutting Test (Ideal – RT)

Indirect Tensile Asphalt Cracking Test (Ideal-CT)

IC for Asphalt Construction

Source: modified from Wirtgen, GSSI

Our Goals...

- Reduce worker exposure to traffic
- Increase pavement quality
- Reduce inspection demand

2024 Performance Specifications

Cracking Tolerance	Tensile Strength	Percent of		
Index (CT _{Index})	Ratio (TSR) ^(a)	Contract Price		
40 - 49	70 – 74 %	97%		
50 – 99	75 – 84 %	100%		
100 or Greater	85 % or Greater	103%		

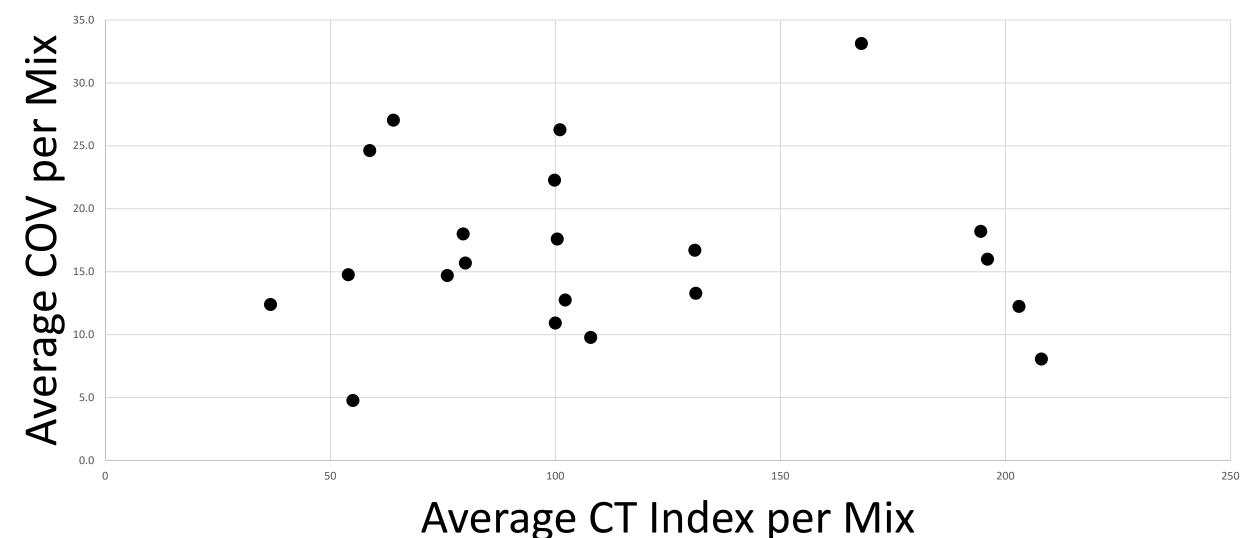
RT-Index Qualifier for CT/TSR Bonus

PG High Temp. Grade	Minimum RT- Index	
64S & 58H	50	
64H	65	
64V	80	

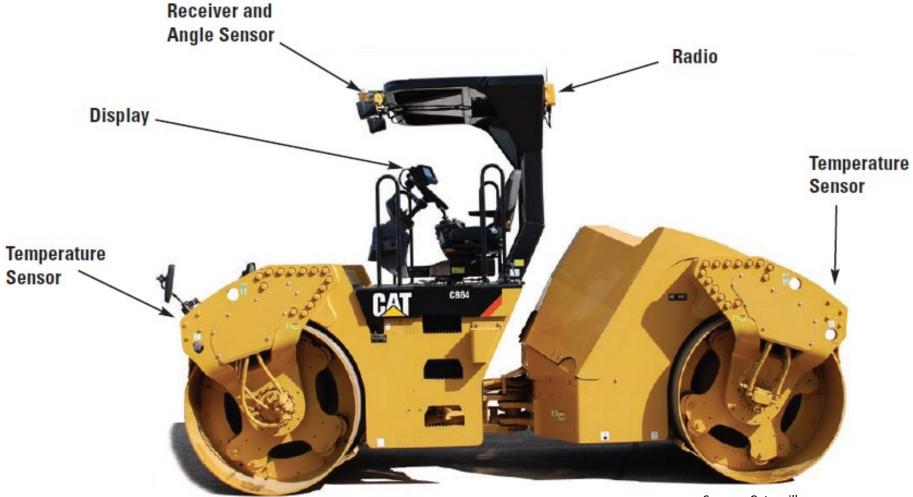
CT-Index Variability

□COV of about 20%

□Sampling □Minimizing Segregation

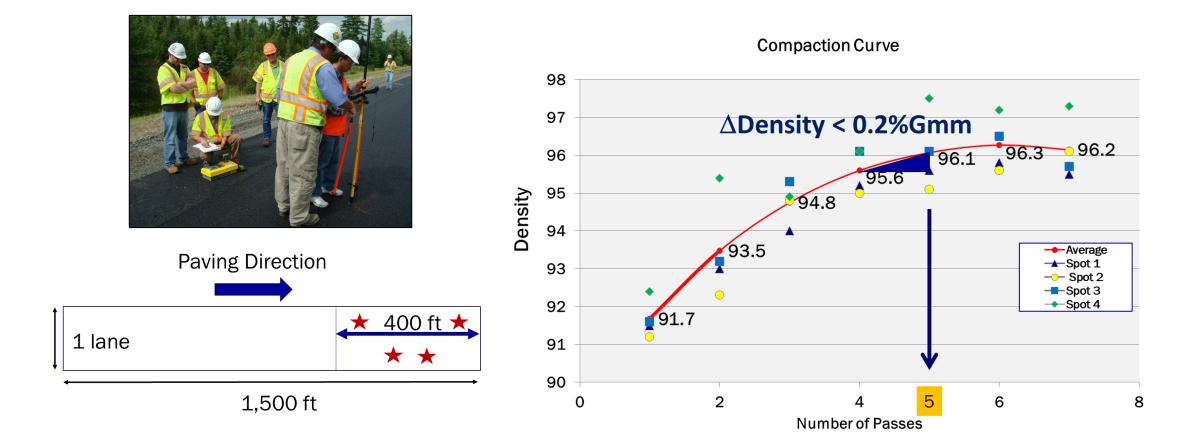

Specimen Conditioning must be consistent
 Allowing times for additives to react with mix

Consistency Overall Human Error and Mix Consistency



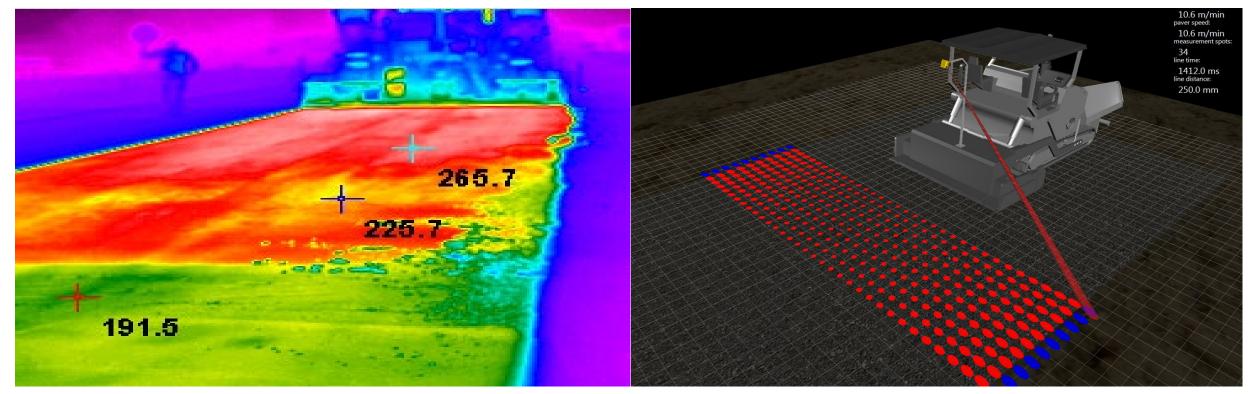
Variability of CT-Index for 2023

QC COV vs. CT Index



Intelligent Compaction (IC)

Source: Caterpillar

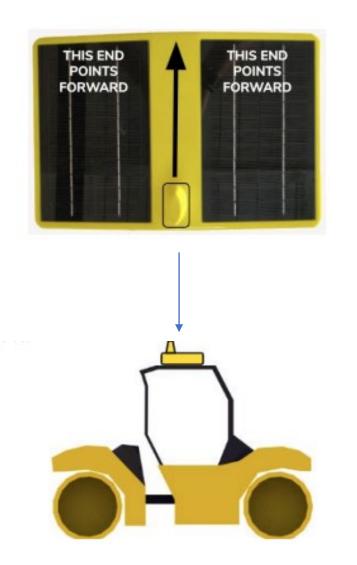

Trial Section - Determine Optimum Passes

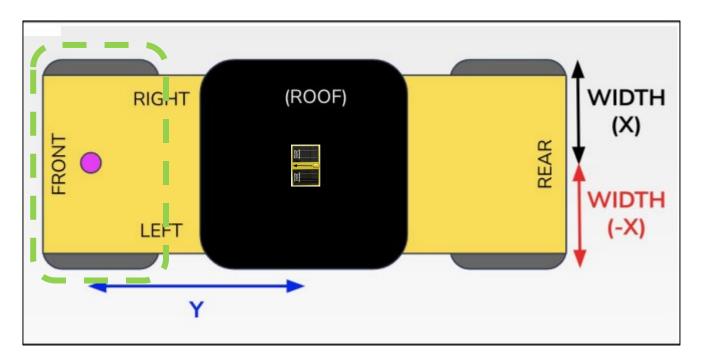
Intelligent Compaction Benefits

- Aids the roller operator in achieving the proper coverage especially at night.
- Provides the roller operator temperature of asphalt to ensure the optimum pass count is achieved above 180°F
- Provides a theoretical density of the entire roadway

Paver-Mounted Thermal Profiler (PMTP)

Conventional Thermal Camera

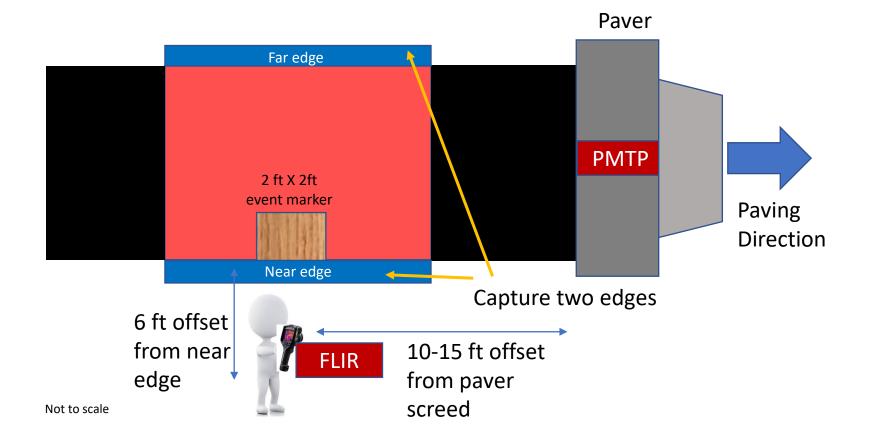

PMTP


Source: MOBA

PMTP Benefits

- Shows real time temperature map of the asphalt behind the paver
- Allows for adjustment to be made in the field to reduce segregation
- Thermal segregation results in an uneven density of the mat.

IC QA Process



- Magnetic-mounted and solar-powered (independent of contractor equipment).
- Collects RTK location data similar to contractor data.
- Offset location to the drum footprint similar to most contractor data.
- Holds 2-3 days worth of data on internal data storage.

PMTP Temperature QA Verification

• Project staff use an infrared camera to take a picture of the new asphalt for temperature comparison.

Tying BMD and IC/PMTP all Together to Improve Asphalt Quality

BMD Specifications – Crack and rut resistant and durable asphalt mixture without chasing individual mix components.
 IC Specifications – Consistent density of the entire mat (# Roller Passes @ Compaction Temperature is being achieved)
 PMTP Specifications – Uniform, properly handled asphalt mix is being delivered to the paver.

2024 Spec Revisions

- 403 Spec to include Balanced Mix Design (BMD)
 - Will require collection of loose mix sample to be from the plant, so to ensure segregation is limited PMTP will be required
- PMTP (406) Spec to be added
 - Will be required on all 403 BMD Projects
 - Requires cell service and GPS signal
 - \$40 Bonus/Disincentive per 150ft sublot (2% Bonus)
- IC (405) Spec to be added
 - Same requirements as PMTP but currently is only a pre-qualifier for the density bonus obtained from cores

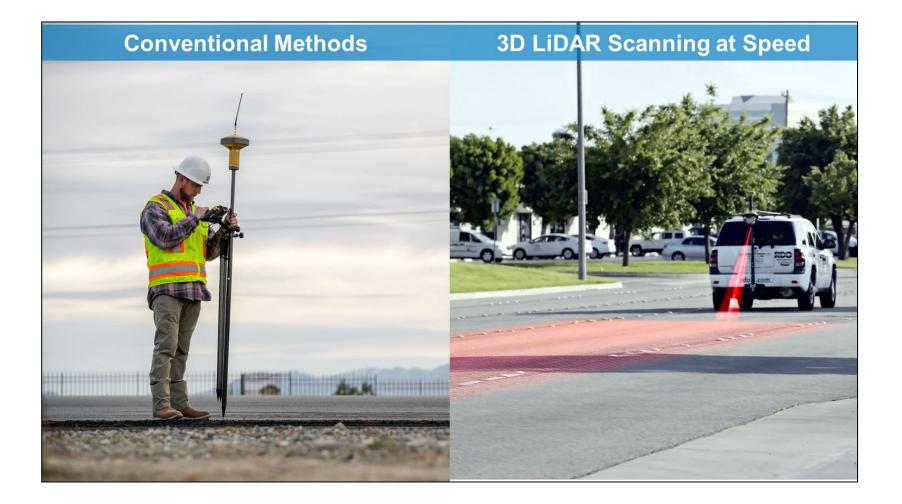
2024 Specification

Thermal Segregation Category	Adjustment per 150 ft. Sublot
Low (DRS<25°F)	\$40 Incentive (about 2%)
Moderate (25-35°F)	\$40 to \$0 Incentive (Linear)
Moderate-High (35-50°F)	0 to -\$40 Disincentive (Linear)
Severe (DRS≥50°F)	Unacceptable Material

Future IC Segment Classifications

Daily Coverage	Classification
Coverage ≥ 85%	Passing
Coverage < 85%	Deficient

*All segments with a mean temperature of less than 180 F at the optimum pass shall be considered deficient.


Future Price Adjustments

If the density for a Deficient Segment has not been already declared unacceptable then an additional density verification shall be performed. The location of the density verification shall be marked by the engineer based on coverage shown in Veta. The results of the density verification shall determine actions taken as follows the table below:

Field Density (Percent of Laboratory Max. Theoretical Density)		-	Actions to be taken as a result of additional density verification	
For all SP & BP mixtures other than SMA:				
		92.5 to 98 inclusive	Continue with PWL	
97.1 to 98.0	or	90.5 to 92.4 inclusive	The lower of 100% Pay or PWL Deduct	
Above 98.0	or	Below 90.5	Remove and Replace Limits*	
	F	or SMA mixtures:		
		>94.0	Continue with PWL	
		92.0 to 93.9 inclusive	The lower of 100% Pay or PWL Deduct	
		Below 92.0	Remove and Replace Limits*	

*Removal limits shall be defined by the engineer based on density results and coverage shown in Veta

Innovative Boundary Collection - Lidar

Innovative Boundary Collection – a Paver-Mounted GPS Receiver

- Piloted in 2023.
- Mounted GPS receiver and data collector to paver.

Innovative Boundary Collection – Paver-Mounted GPS Receiver

- Set a distance-based collection rate – collect point every 100 feet.
- Powered by paver.
- Used tilt compensation.

PMTP Challenges

- GPS Signal and Cell Service
 - Base Stations can help with poor cell coverage but not poor GPS signal
- Equipment needs to be kept clean
- Need to stay clear of mat behind paver
 - You could show up as a cold spot in the mat

IC Challenges

- GPS Signal and Cell Service
- Joint Bumps
- Changes in sub-grade stability can change density
- Equipment malfunctions/break downs

Updated Data Loss/GPS Obstructions

406.4.6 Loss of Data. If data collection ceases as a result of circumstances reasonably beyond the control of the contractor, the contractor will be allowed to continue the days paving, but the paved sublots will not be eligible for bonus. The engineer must be notified immediately of the issue and determine if the contractor has made a reasonable effort to resolve the issue. A meeting with the engineer shall be held to determine how to proceed if the issue is expected to extend into the next day's paving. Failure to notify the engineer of the issue at hand will result in the paved sublots to receive a -\$40 deduct.

406.4.6.1 GNSS Obstructions. A base station shall be used at any locations having poor cellular reception. Isolated areas influenced by a GNSS obstruction may be excluded from DRS computation provided that the following conditions are satisfied:

- (1) The position data is present
- (2) The GNSS Reception Mode as recorded by the onsite equipment indicates that an obstruction is present
- (3) The location is properly flagged in the Veta project file and the location is identified in the bi-weekly report
- (4) The total of these areas is no more than 5% of any single day's production.

Implementation Goals

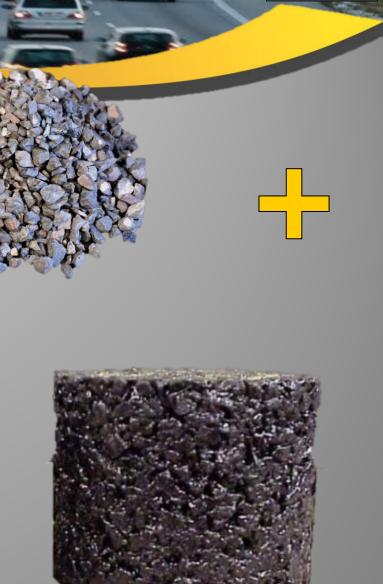
- □ Finishing a Final "Draft" BMD Specification for Pilot Projects
 - 14 Pilot Projects per Year

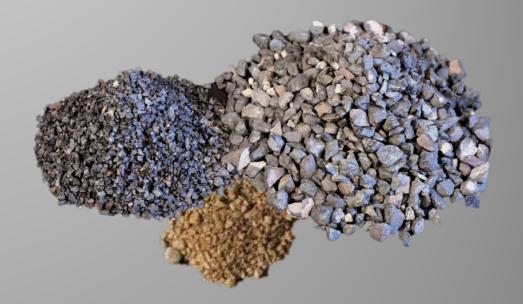
- Working on Interim BMD Specification
 - Allow Contractors to select BMD Spec or Current SuperPave Spec
 - Interim Spec will NOT have IC; but will have PMTP requirement.

Veta Training w/ Transtec Group

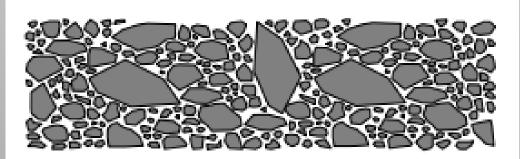
Monday, Feburary 26th GoToWebinar Only No In-Person Option

Job Mix Formula (JMF) Review, Source Approval Process, and Gsb Impacts

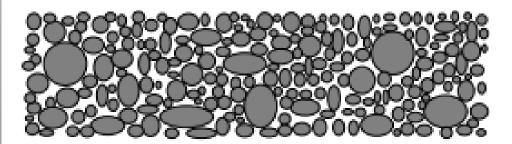

Asphalt Components



MODOT



- □ By weight 95% mix.
- □ Gives pavement most of its strength.
- □ Starts out as Rock within a Ledge & Formation.
- □ Processed (crushed) by quarries Aggregates.
- □ Not all aggregate is good quality.


Aggregate Qualities

- Durability
 - Hardness
 - Absorption
- Angularity
 - Number of crushed faces.
 - Gives the strongest structure.
 - Provides better skid resistance.
- Deleterious Material (clay, shale, foreign material).
- □ Aggregate size Gradation

MODOT

Cubical Aggregate

Rounded Aggregate

Aggregate Source Approval Process

Source Approvals Required on All Aggregates of Section 1002, 1003, 1004, and 1005

- Tested Annually Make sure the SA is up-to-date
- Required for each ledge combination
- \circ 1 1 ½" Aggregate Size

1002 Aggregate Requirements

- □ Coarse Aggregate LA, SpG, Abs, Gradation, Del, Micro Deval
- □ Fine Aggregate SpG, Gradation, Del/Light Weight

ASPHALTIC CONCR

MODOT

Aggregate Source Approval Process

#30

#50

#100

#200

1.5

1.3

1.2

1.1

2.0

1.7

1.5

1.3

23.0

19.0

12.0

7.5

/	Date =		6/29/2023							
	IDENT.								BULK	
	NO.		MATERIAL T	YPE	PRODUCER,	LOCATION			SP. GR.	_ \
	23CDTMS0	93	1						2.654	
	23CDTMS0	94	3/4						2.665	
	23CDTMS0	95	1/2 Base						2.665	
	23CDTMS0	96	3/8"						2.677	
	23CDTMS0	97	MS						2.653	
	23CDC3B02	28	RAP		1			÷	2.687	
N	0		0						1.000	
	Anti Strip								% by weight	to
	Asphalt Cer	nent							1.030	Gi
]					
	MATERIAL									
	IDENT #	23CDTMS093	23CDTMS094	23CDTM5095	23CDTMS096	23CDTMS097	23CDC3B028	0		23
		1	3/4	1/2 Base	3/8"	MS	RAP	0		
	1 1/2"	100.0	100.0	100.0	100.0	100.0	100.0	0.0		
			100.0	100.0	100.0	100.0	- 1.1 - 1.1	0.0		
	1"	100.0	100.0	100.0	100.0	100.0	100.0	0.0		
	1" 3/4"	100.0 74.0								
			100.0	100.0	100.0	100.0	1.00.0	0.0		
	3/4"	74.0	100.0 100.0	100.0 100.0	100.0 100.0	100.0 100.0	100.0 100.0	0.0 0.0		
	3/4" 1/2"	74.0 21.0	100.0 100.0 87.0	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	0.0 0.0 0.0		
	3/4" 1/2" 3/8"	74.0 21.0 6.0	100.0 100.0 87.0 63.0	100.0 100.0 100.0 95.0	100.0 100.0 100.0 99.9	100.0 100.0 100.0 100.0	100.0 100.0 100.0 96.5	0.0 0.0 0.0 0.0		

2.4

2.2

1.9

1.5

27.0

17.0

9.0

6.2

30.7

23.5

16.7

9.6

0.0

0.0

0.0

0.0

Specific Gravity = Weight / Volume * ρ

Gb: Specific Gravity of Asphalt Binder

Gsb: Bulk Specific Gravity of Aggregate

Gmm: Max Specific Gravity of Mix (No Air)

Gmb: Max Specific Gravity of Mix (With Air)

Volumetric Checks

Ps: Percent Aggregate VMA: Voids in Mineral

VMA = 100 – ((Gmb x Ps)/Gsb)

Va: % Air Voids

VFA: Voids Filled with Asphalt

Vbe: Volume of Effective Asphalt

Pba: Percent Binder AbsorbedPbe: Percent Effective BinderPb: Percent of Asphalt Content in Mix#200/Pbe: Effective Dust to Binder Ratio

% Air Voids = 100 x ((Gmm-Gmb)/Gmm)

VFA = ((VMA - Va)/VMA)

Vbe = <mark>VMA</mark> - Va

Pba = Gb x ((100-Pb) x ((Gse – Gsb)/(Gse x Gsb))) Pbe = Pb - Pba

MODOT

MATERIAL TYPE SELECTION

Mix Design a.k.a.

Job Mix Formula (JMF)

DATE =	08/19/14											SP	125 14-80
IDENT. NO.	PRODUCT COD	E	/ PRODUCER,	LOCATION			BULK SP. GR. 2.652	APPAR. SP. GR. 2.769	%ABS 1.6	FORMATION	LEDGES	% CHERT	
							2.633 2.612 2.512 2.696	2.761 2.753 2.635 2.696	1.8	-			
						BULK		APF	PAR				
14MFO0027 14SEMA0011 MATERIAL	1071APAS 1015ACPG6422	2V		stom Chemicals, I y, Willow Springs		SP. GR.		SP.	GR		%ABS	F AC	
IDENT # 14080 1 1/2*	14CDSMA146 1 3/4* 100.0	4CDSMA147 1/2" 100.0	14CDSMA149 MAN SAND 100.0	14CDR3R117 1 MAN SAND 100.0	4CDR3R109 RAP 100.0	2.652		2.7	769		1.6]—	COMB. GRAD 100.0
1" 3/4" 1/2"	100.0 100.0 82.8	100.0 100.0 99.8	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 97.1	2.633		2.7	761		1.8	1	100.0 100.0 95.6
3/8" #4 #8	57.2 10.2 1.8	83.0 19.0 3.7	100.0 99.9 69.0	100.0 93.5 60.9	89.4 64.6 42.3	2.612			753		_	1	84.0 50.5 30.4
#16 #30 #50	1.7 1.6 1.4	3.6 3.3 3.1	42.0 27.0 17.0	39.3 27.4 16.5	31.9 28.7 19.0							1	21.0 16.5 11.0
#100 #200	1.3 1.1	2.9 1.9	9.0 6.2	7.6 3.2	12.6 7.6	2.512			635				6.9 4.2
CHARAC	RATORY TERISTICS TO T312	Gmm = Gmb = Gsb =	2.363		% VOIDS = V.M.A. = % FILLED =	2.696		2.6	696			MPOSITION MIN. AGG. T CONTENT	94.7% 4.0%
CALIBRATION MASTER GAUC			XXXXXX XXXXXX									ENT W/ RAP	5.3%

Job Mix Formula Contractor Submital

- Basic Information Date, Mix Type, Contract ID, Job Number, Route, County, Contact Info
 Job Mix Formula (JMF) of Proposed Mix
- Raw Material Data Supporting the JMF Follows Sections 401.4 or 403.4
 - All material sources and characteristics
 - Percentage of each source and combined gradation
 - Volumetrics and raw data calculations
 - All Section 401 or 403 requirements TSR, Dust/Binder, etc.

Check Contract Requirements (Contract Job Special Provisions, Contract Plans, etc.):


- Mix Type Confirmed
- Asphalt Binder Contract Grade Confirmed
- Proposed Work (Type of Work, job location, and length)
- Mix Use
- Quantity of Mix
- Verify any additional mix requirements in Job Special or General Provisions

Inspectors Check Contract Plans and JSP's

- On-Line Plans Room
- eProjects

Job Mix Formula Checks:

- □ Aggregate Source Approvals Current (updated annually)
 - Approved for Sec 1002 for Asphalt Quality
 - Correct Formation and Ledge Combinations
- Bulk Specific Gravity of Stone (Gsb) Check.
 - JMF Gsb within +0.025 of Source Approval Gsb for each fraction
 - If greater than 0.025 for any one fraction; follow flowchart
 - Check if Gsb(combined) is accurate
- Plasticity Index (PI) and % Deleterious Checks
 - If Plasticity Index on any fraction is greater than 3; TSR data shall be provided for 401 (BP/BB) and 402 (SL) mixtures. TSR data shall be provided on all 403 (SuperPave mixtures).
 - The combined % Deleterious on all fractions shall not exceed 8.0 % for all mix types.
- Check Bin Percentages = 100
- Check JMF Gradations of each Fraction matches AWP Gradation
- □ Check RAP or RAS JMF Gradation matches AWP Gradation
- □ Combined Gradation is accurate and meets 401, 402, or 403 requirements.
- JMF Asphalt Binder matches AWP Asphalt Binder
- $\hfill\square$ Check Asphalt Mixing and Asphalt Molding Temperatures are on JMF
- □ Check that Mineral Aggregate and Total Asphalt Content (with RAP and/or RAS) = 100

JMF, Source Approval, Cognos, and AWP **Checks**

Inspectors Now Checking Gsb

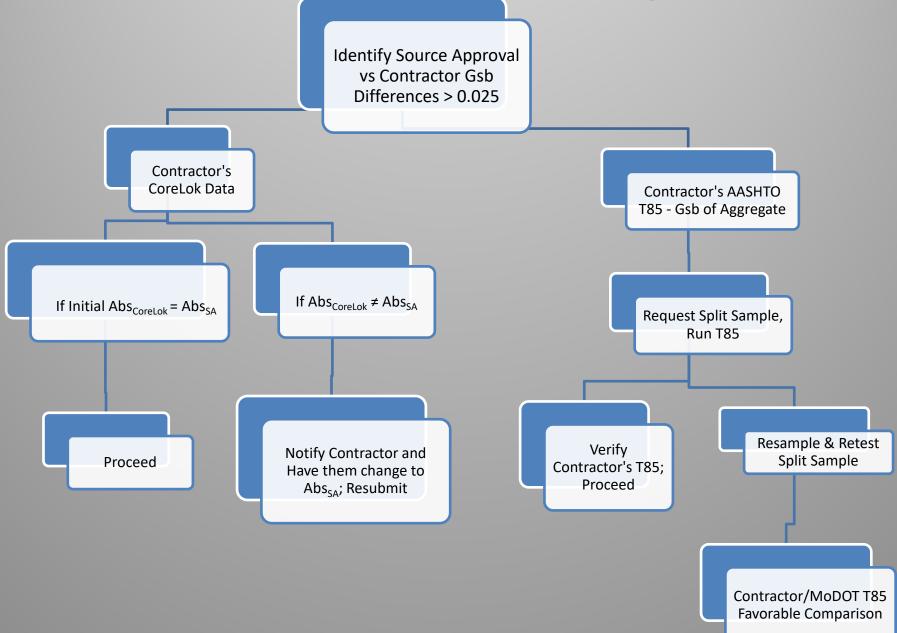
MISSOURI DEPARTMENT OF TRANSPORTATION - DIVISION OF MATERIALS

ASPHALTIC CONCRETE TYPE SP190CLG

A	PPROVED BY =	Willie Johnson													
DATE =	07/11/23														SP190 23-100
IDENT.								BULK	APPAR.						
NO.	PRODUCT COL	DE /	PRODUCER,	LOCATION				SP. GR.	SP. GR.	%ABS	FORMATION		LEDGES	% CHERT	
					_			2.654	2.789	1.8				_	
					_			2.665	2.795	1.7				_	
					_			2.665	2.790	1.7				_	
					_			2.677	2.797	1.6	-			_	
					_			2.653	2.768					-	
					-			2.687	2.687					-	
					-										
23MFO0013	1071APAS	1	Ingevity, North	Charleston, SC	c						MORLIFE 5000		0.5% BY WT OF A	AC	
23SEMA005	1015ACPG642	22H /	Coastal Energ	y, Willow Spring	gs, MO			1.030		PG64-22H	Gyro Mold Temp	. 288-298°F			
IN-LINE GRAD	DE = PG64-22H							CONTRACT G	RADE = PG70-2						
MATERIAL															
IDENT #	23CDTMS093	23CDTMS094 2	3CDTMS095	23CDTMS096	23CDTMS097 2	23CDC3B028		23CDTMS093	23CDTMS094	23CDTMS09	5 23CDTMS096	23CDTMS097	7 23CDC3B028		COMB.
23100	1"	3/4"	1/2"	1/2"	MAN SAND	RAP		9.0	23.0	25.0	10.0	8.0	25.0		GRAD
1 1/2"	100.0	100.0	100.0	100.0	100.0	100.0		9.0	23.0	25.0	10.0	8.0	25.0		100.0
1"	100.0	100.0	100.0	100.0	100.0	100.0		9.0	23.0	25.0	10.0	8.0	25.0		100.0
3/4"	74.0	100.0	100.0	100.0	100.0	100.0		6.7	23.0	25.0	10.0	8.0	25.0		97.7
1/2"	21.0	87.0	100.0	100.0	100.0	100.0		1.9	20.0	25.0	10.0	8.0	25.0		89.9
3/8"	6.0	63.0	99.9	95.0	100.0	96.5		0.5	14.5	25.0	9.5	8.0	24.1		81.6
#4	2.0	12.0	38.9	61.0	99.9	71.3		0.2	2.8	9.7	6.1	8.0	17.8		44.6
#8	1.8	3.0	3.2	41.0	69.0	51.0		0.2	0.7	0.8	4.1	5.5	12.8		24.0
#16	1.7	2.4	2.6	35.0	42.0	38.0		0.2	0.6	0.7	3.5	3.4	9.5		17.7
#30	1.5	2.0	2.4	23.0	27.0	30.7		0.1	0.5	0.6	2.3	2.2	7.7		13.3
#50	1.3	1.7	2.2	19.0	17.0	23.5		0.1	0.4	0.6	1.9	1.4	5.9		10.2
#100	1.2	1.5	1.9	12.0	9.0	16.7		0.1	0.3	0.5	1.2	0.7	4.2		7.0
#200	1.1	1.3	1.5	7.5	6.2	9.6		0.1	0.3	0.4	0.8	0.5	2.4		4.4
	RATORY	Gmm =	2.535		% VOIDS =	4.0	TSR =			R Wt.				MIX COMPOSITION	
	TERISTICS	Gmh =	2.433		V.M.A. =	13.4	-200/AC =			340	Ndes =	80		MIN. AGG.	95.1%
	TO T312	Gsb =	2.672		% FILLED =	70	Gyro Wt. =		50		14069 -	00	V	IRGIN ASPHALT CONTENT	3.7%
CALIBRATION	I		2.072				MASTER GAUGE BACK CNT. =				A1 =	-X.XXXXXXX		TOTAL ASPHALT CONTENT	4.9%
	JGE SER. NO. =		XXXXXX				SAMPLE WEIGHT =				A1 -	X.XXXXXXX	· · · · · · · · · · · · · · · · · · ·	OTREASTINET CONTENT	4.576
		on Contractors Mix Des					SAMPLE WEIGHT =	~~~~			H2 =	7.777777			

□ CoreLok – Coarse Aggregate Specific Gravity

- Most Common Contractor Method
- Less Subjective, More Consistent, Usually a little higher


□ AASHTO T 85 – Coarse Aggregate Specific Gravity

Procedures in Checking Gsb

Missouri CoreLok Aggregate Specific Gravity Calculation

Updated 01/0	2/2007		ber Sheet De lic Bag Dens	-	1.342 0.932				\bigcap			en no coars opproximate	e fraction is av value	ailable;
Sample ID	Dry Sample 1 Weight	Sample 1 weight in container filled with water	Volumeter Calib.	Bag weight	Rubber sheet weight	Dry Sample 2 weight	Weight of sealed Sample 2 opened in water	P1	Input initial absorption estimate AASHTO T 85*	Preliminary Absorption	Apparent Specific Gravity			
3/29/2007	A (g)	B (g)	C (g)	D (g)	E (g)	F (g)	G (g)	CorGeb g/cm3	ABS	CorABS	CorGsa (g/cm3)	Gsapred CoreLol Apparent	Gsbpred CoreLok Bulk	ABSpred Corelok Absorption
23CDTMS093	1584.4	6688.1	5679.0	27.2	0.0	1500.0	964.3	2.75	1.9	0.729	2.810	2.789	2.654	1.8
23CDTMS093	1473.4	6619.9	5679.0	27.1	0.0	1500.1	965.0	2.767	1.9	0.602	2.814	2.795	2.665	1.7
23CDTMS094		6606.4	5679.0	27.6	0.0	1500.9	964.0	2.766	1.9	0.514	2.806	2.790	2.665	1.7
23CDTMS095	1474.9	6623.5	5679.0	27.0	0.0	1500.5	964.7	2.781	1.9	0.385	2.811	2.797	2.677	1.6
23CDTMS097	500.0	4523.3	4205.3	27.0	0.0	1000.0	638.3	2.747	1.8	0.427	2.780	2.768	2.653	1.6
23001103087			7200.0			1000.0	000.0	Aug 1				2., 00		
														1
	<u> </u>	<u>1</u>			house in the second						•••••••••••••••••••••••••••••••••••••••			

AASHTO T85 – G_{sb} Measurements

		Aggregate	Specific Gr	avity		
		Coarse:	AASHTO T	85/ASTM	C127 (+4)	
		-				
		Coarse				
	Aggregate:	TR&G 3/8"	CM16 Trap	Rock 23SE	EMA054	
Weight of C	Oven Dry Sai	mple		(A)	1682.8	g
Weight of S	SSD Sample	, in Air		(B)	1688.2	g
Weight of S	Saturated Sa	mple, Wate	r	(C)	1055.7	g
Bulk Speci	fic Gravity			A/(B-C	2.661	
Apparent S	Specific Grav	rity		A/(A-C)	2.683	
Absorption				((B-A)/A	0.3	

		Coarse				
	Aggregate	TR&G 9/16	" CM14 Tra	p Rock 23S	EMA053	
Weight of (Oven Dry Sa	mple		(A)	2944.6	g
Weight of S	SSD Sample	e, in Air		(B)	2953.9	g
Weight of S	Saturated Sa	ample, Wate	er	(C)	1846.3	g
Bulk Speci	fic Gravity			A/(B-C	2.659	
Apparent S	Specific Grav	vity		A/(A-C)	2.681	
Absorption				((B-A)/A	0.3	

MoDOT G_{sb} Check in COGNOS

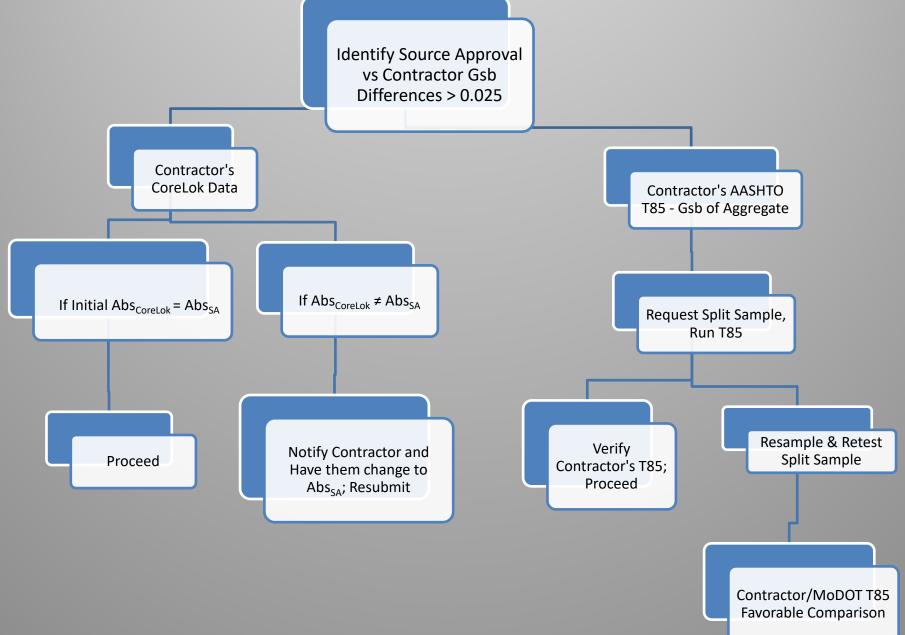
🗋 Material	.s - Aggregat	es					QLIS Sourc	ce			
My content	Team content	Samples	My	portal pag	ges						
Team content / AASH	HTOWARE / Headquart	ters / Materials - Ag	gregates	_			Last Accessed 6/23/2023, 8			<mark>L.</mark>	
MoDOT	QUA	RRY LEDGE		RMATI	ON SU	МГ	MARY -	Source			Jan 18, 2024
Willard Cons	str, St. Robert									(PH#: 573)336-2114
2.7 Mi E/O St. Robert		65583	3	S	t. Robert			County			
	Longitude:	-92:05:31.92 Lat	titude: 3	7:49:23.	51						S#: 050100619
ledge	Formation/ Member Lab ID#	Description/Compo Date	onents Micro Deval	LA	SPG		Abs	Unit Weight	MoDOT T14	T104	T161
2 100510CPCML	Gasconade 23CDMST069	.0231204	13.37	30	2.66	7	1.7	100	1.4	3	

- Source Approval taken from 1"
 Aggregate Size
- Comparison issues
 with Contractor's
 smaller chip sizes
 and screenings
- Compare
 Contractor's Gsb to
 MoDOT Source
 Approval

Identify MoDOT SA G_{sb} vs Contractor G_{sb} Differences > 0.025

STEP 1 - Enter StockPile Bi	n %, Contractor's Gs	b's, and Sourc	e Approval Gsb'	S	
Aggregate Blend	% of Aggregate	Contractor's Individual	Source Approval Gsb	Difference	PASS/FAIL
Stockpile # 1	19	2.557	2.588	-0.031	PASS
Stockpile # 2	25	2.590	2.564	0.026	FAIL
Stockpile # 3	20	2.602	2.564	0.038	FAIL
Stockpile # 4	16	2.645	2.625	0.020	PASS
Stockpile # 5	0	2.607	2.600	0.007	PASS
Stockpile # 6	20	2.607	2.600	0.007	PASS
Stockpile # 7	0	2.600	2.600	0.000	PASS
Stockpile # 8	0	2.600	2.600	0.000	PASS
Sum	100	-			
	Gsb (Combind)	2.598			

Missouri CoreLok Aggregate Specific Gravity Calculation


Updated 01/02/2007

Enter Rubber Sheet Density Enter Plastic Bag Density 1.342 0.932 * Use AASHTO T 84 when no coarse fraction is available; blank will produce an approximate value.

Sample ID	Dry Sample	Sample 1	Volumeter	Bag	Rubber sheet	Dry Sample	Weight	P1	Input initial	Preliminar	Apparent			
	1 Weight	weight in	Calib.	weight	weight	2 weight	of		absorption	У	Specific			
		container					sealed		estimate	Absorption	Gravity			
		filled with					Sample		AASHTO					
		water					2		T 85*					
							opened							
							in water							
	Α	В	С	D	E	F	G	CorGsb	ABS	CorABS	CorGsa	Gsapred	Gsbpred	ABSpred
												CoreLok	CoreLok	Corelok
	(g)	(g)	(g)	(g)	(g)	(g)	(g)	g/cm3			(g/cm3)	Apparent	Bulk	Absorption
1/2" CLEAN	1000.0	6299.8	5668.6	27.9	0.0	1500.0	957.3	2.711	3.3	0.836	2.774	2.754	2.544	3.0
5/16" MINUS	500.0	4517.6	4202.6	27.9	0.0	1000.0	635.5	2.703	3.3	0.754	2.759	2.742	2.536	3.0
River Sand	500.0	4513.0	4202.6	27.9	0.0	1000.0	621.5	2.637	0.3	0.274	2.656	2.658	2.635	0.3
Rap									1.0					
SHG									1.0					

			Dera							
1A,1B,1-3	Jefferson City									
	Material repr	esents Ledge 1A,	1B,1-3 Jefferso	n City Forr	nation.					
	Sample com	olies with Specific	ation 1002 Co	arse <mark>Agg</mark> re	gate for HMA					
100210LD1	23CDT15008	20230221	24.17	32	2.498	3.4				
1A,1B,1-3	Jefferson City									
	Material rep	resents Ledge 1A	1B,1-3 Jefferso	on <mark>City</mark> For	mation.					
	Sample comp	olies with Specific	ation 1005 1"	max coarse	e aggregate fo	or PCCM.				
1005CMLD10	22CDLIK011	20220301	20.66	32	2.541	3.3	98	15.1	11	
TOUSCIVILDTU	ZZCDLJKUTT	20220301	20.00	32	2.541	5.5	30	16.1	U.S.	

T 85 Procedures in Checking Gsb

		e Specific Gr				
	Coarse:	AASHTO T	F85/ASTM	C127 (+4)	
	Coarse					
Aggregat	te: TR&G 3/8	" CM16 Trap	Rock 23SE	EMA054		
Weight of Oven Dry S	Sample		(A)	1682.8	3 g	
Weight of SSD Sam	ole, in Air		(B)	1688.2	2 g	
Weight of Saturated		er	(C)	1055.7	7 g	
					-	
Bulk Specific Gravity			A/(B-C	2.661	1	
Apparent Specific G			A/(A-C)			
Absorption	-,		((B-A)/A			
					-	
						_
	Coarse					
Aggrega	te: TR&G 9/1	16" CM14 T	rap Rock 2	3SEMA0	53	
Weight of Oven Dry S	Sample		(A)	29	44.6	a
Weight of SSD Sam			(B)		53.9	-
Weight of Saturated		ator	(C)		46.3	
Weight of Saturated	Cample, We			10	40.5	y
Dulls On a difficiency of the			A // D	0 0	050	
Bulk Specific Gravity			A/(B -		.659	
Apparent Specific G	ravity		A/(A-(.681	
Absorption			((B-A)	11	0.3	
-						
	200101	Date		eval	En	
			De	eval		
2	Rhyolite					
	-	presents Ledg	tes 2 Rhyolite	e Formation	•	
	materiatie	presents Ledg	ses z nityoute	e i ormation		
	Sample con	nnline with Cr	ocification 1	005 1" ma	×	rco -
		nplies with Sp		005, 1° ma	x, coa	ise a
	not apply fo	or this sample	<u>2</u> .			
100510CPPY	23SES1L020	S 20230515		2.27	15	

MODOT

100

Contractor/MoDOT's Gsbs Do Not Compare Favorably and AASHTO T 85 Test Method was Used

□ Split Sample Requested and MoDOT will verify

• AASHTO T85 results compare favorably and proceed with the mix design approval

MODO

- If no split sample available OR Central Lab results did not compare, request the contractor to sample the correct stockpile or aggregate source and provide another split sample
- □ Inspector/Contractor work together until favorable comparison
- If necessary, contractor resubmits JMF with new Gsb, new combined Gsb, and new volumetric properties.

Jason Blomberg – (573) 508-9720

Jason.Blomberg@modot.mo.gov

+ . ENVIRONMENTAL **COMPLIANCE FOR PLANT OPERATORS**

0

Black to Basics 2024 – Jordan Janet, Delta Companies, Inc.

Topics of Discussion

- Air Emissions
- Stormwater Pollution
- Spill Prevention, Control and Countermeasure
- Land Management

Air Emissions

Application for Permit to Construct

- Application for Authority to Construct MO 780-1323
- DNR quotes 4-12 months for processing
 - The state has 90 days
 - 60 days is typical
 - Construction Waiver
- Calculations Sheets
 - State has one they will help walk through can be daunting
 - Some state engineers can go above duty to help

Plant is ready to rock!

- Must have complete construction permit in hand to operate
- Notify your regional office within 15 days of start-up
- Must Stack-Test next!

Stack Test

- Must complete within 6 months of start up
- Production must be representative of typical maximum capacity
- State must be notified 30 days prior to stack test
- 3P engineering firms listed on DNR's website

Required Documentation

- Rolling 12-month production calculation
 - Typical of Section 5 permits, limiting emissions to 15 tons
- Watering requirements
 - Undocumented water will lower your production limit based on assumed emissions
- Baghouse operation
 - Pressure drop reading daily
 - Operating and maintenance log
- Fuel sulfur content <15ppm (depending on your fuel source)

Portable Plants

+

0

- Shall not be operated at a location longer than 24 consecutive months
- Relocation Request
 - 7 days prior to move if next site has already been permitted
 - 21 days prior to move if next site has not been permitted
 - Or conditions have changed
 - IE two plants will be there

Stormwater Pollution

- General Operation Permit
 - Allows for stormwater runoff
 - Must sample quarterly
 - Analyzed by 3P lab
 - EDMR
 - Flow
 - TSS
 - Settleable Solids
 - 0&G
 - pH
 - SWPPP
 - Inspections and Trainings
 - BMP's?

SPCC

- Who needs an SPCC?
 - Aboveground oil storage >1320 gallons (max not operational)
 - Do not count containers <55 gallons
 - Including oil-filled equipment
 - Reasonably expected that a discharge could reach navigable waters of the US.
- Each plan must be certified by a PE
 - Facilities can self-certify
 - Oil storage capacity of 10,000 gallons or less

SPCC

+

0

Important Elements of an SPCC Plan:

- Facility diagram and description of the facility
- Oil discharge predictions
- Appropriate secondary containment or diversionary structures
- Facility drainage
- Site security
- Facility inspections
- Requirements for bulk storage containers including inspections, overfill, and integrity testing requirements
- Transfer procedures and equipment (including piping)
- Requirements for qualified oil-filled operational equipment
- Loading/unloading rack requirements and procedures for tank cars and tank trucks
- Brittle fracture evaluations for aboveground field constructed containers
- Personnel training and oil discharge prevention briefings
- Recordkeeping requirements
- Five-year Plan review
- Management approval
- Plan certification (by a Professional Engineer (PE) or in certain cases by the facility owner/operator)

Containment

- Containment must be 110% of the largest container
- Substances that share containment must be compatible
- Secondary containments and tanks should have capacity labels
- Containments aren't necessarily what you think
 - Collection and containment area
 - Environmental equivalence

What if I Spill?

- MO state reportable spill is >50 gallons
 - Report to DNR at earliest practical moment upon discovery
 - 25 gallons or more if UST
- Any release of oil that reaches or threatens any waterway
 - Sewers, groundwater, wetlands, lakes, creeks, streams, rivers
 - Road ditches
- How to clean spills?

Land Management

0

WHO TO CONTACT?

Be proactive – contact Jeff City or your Regional Offices

THANK YOU

Questions or Discussion

+

0

Tack Coat

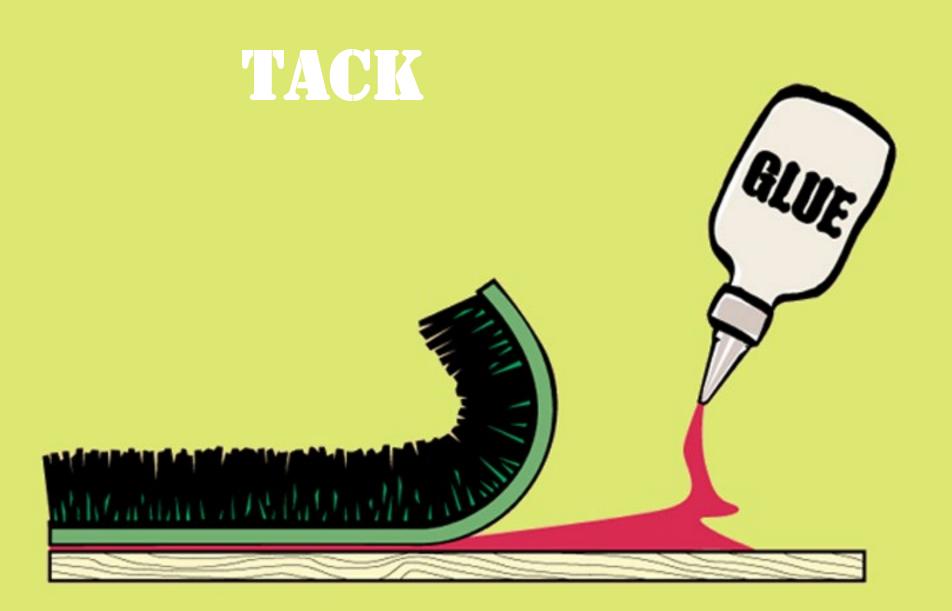
Problems and Solutions

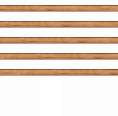
Since 1898

Asphalt Distributors

ChipSpreaders

E. D. Etnyre & Co. www.etnyre.com 800-995-2116 email: sales@etnyre.com


Asphalt Storage Tanks


- Vide 2 - Wally

Bonded Demonstration

- Up to 5 sheets (layers)
- ▶ 48" x 4" x 11/32"
- 60, 100, or 160 pound loadings
- Various Bonding Configurations

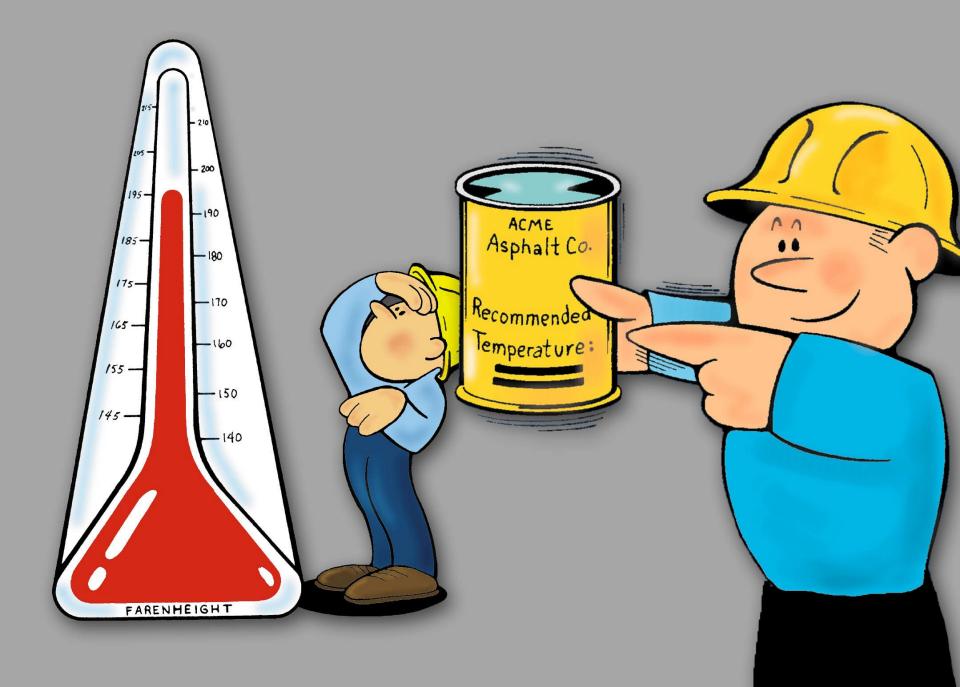
Successful Tack Coat The Ultimate Goal: Uniform, complete, and adequate coverage

Construction Issues

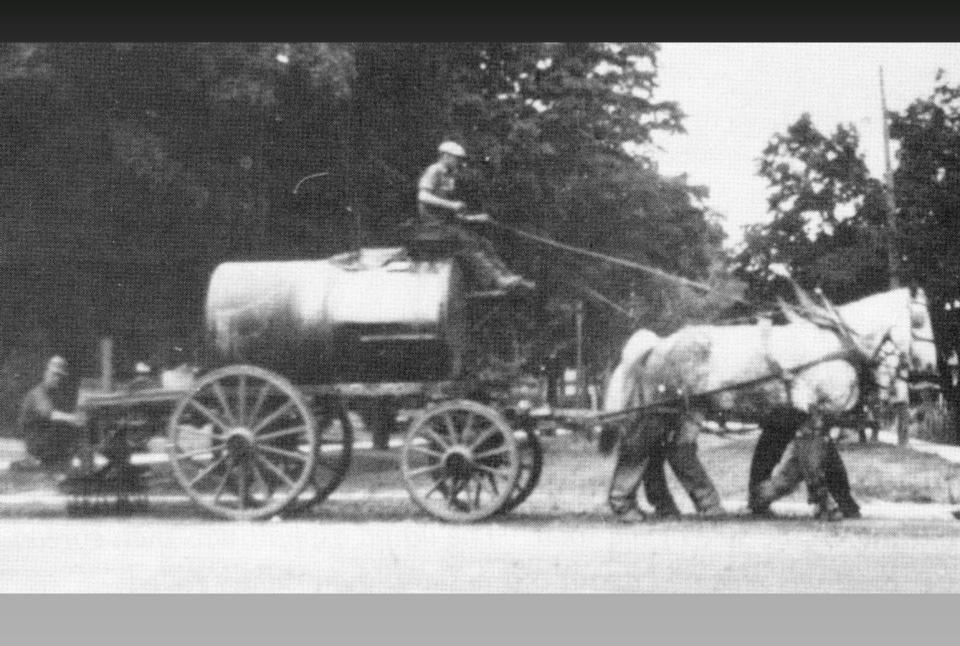
Uniformity of the Tack Coat ApplicationNon-uniform ApplicationProper Application

Slippage Failure

Types of Tack Coat Failures Delamination of overlay from underlying pavement



2012/08/28 05:24



Example of Emulsion Break

Unbroken Emulsion After Breaking

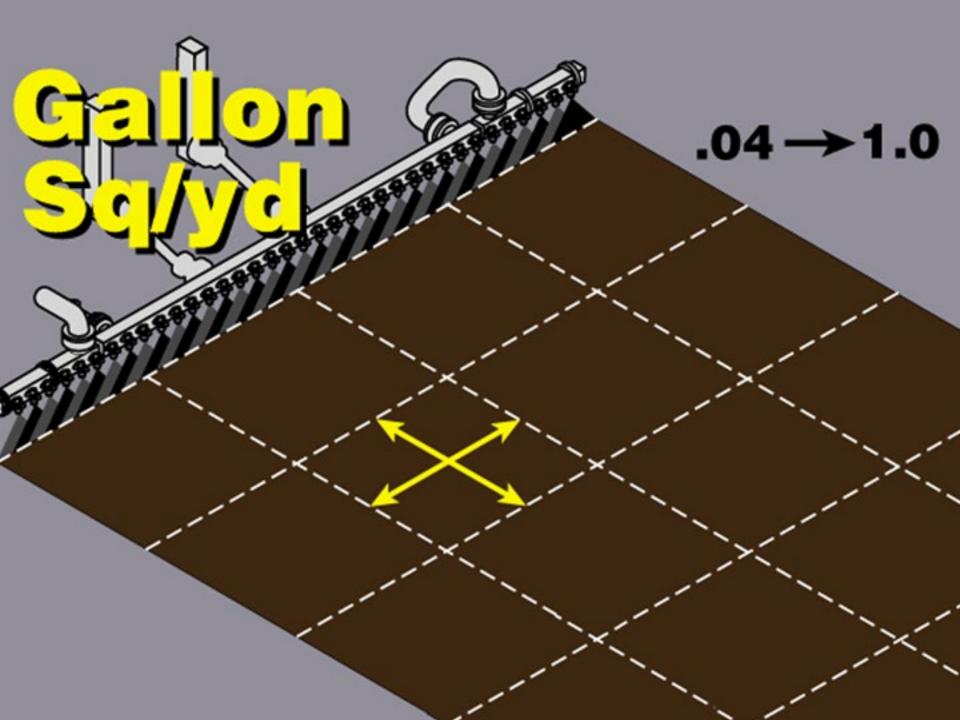
Basic Functions

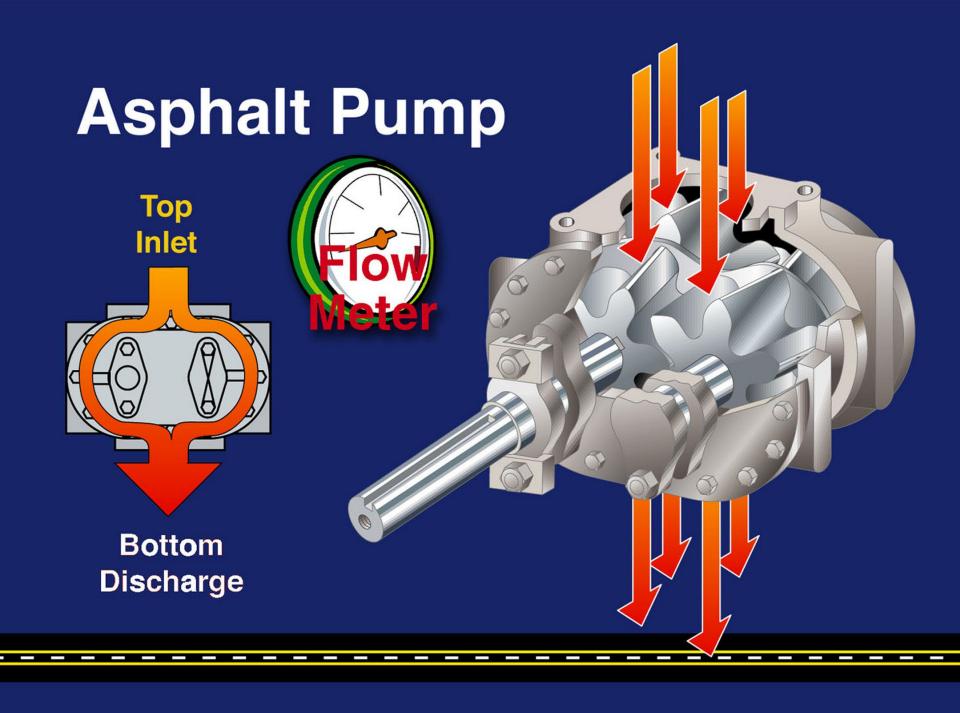
- 1. Fill the tank.
- 2. Heat material in tank.
- 3. Circulate material in tank.
- 4. Circulate material in spray bar.
- 5. Spray a metered amount of material.
- 6. Handspray.
- 7. Suck-back material from spray bar.
- 8. Wash out.
- 9. Transfer / unload.

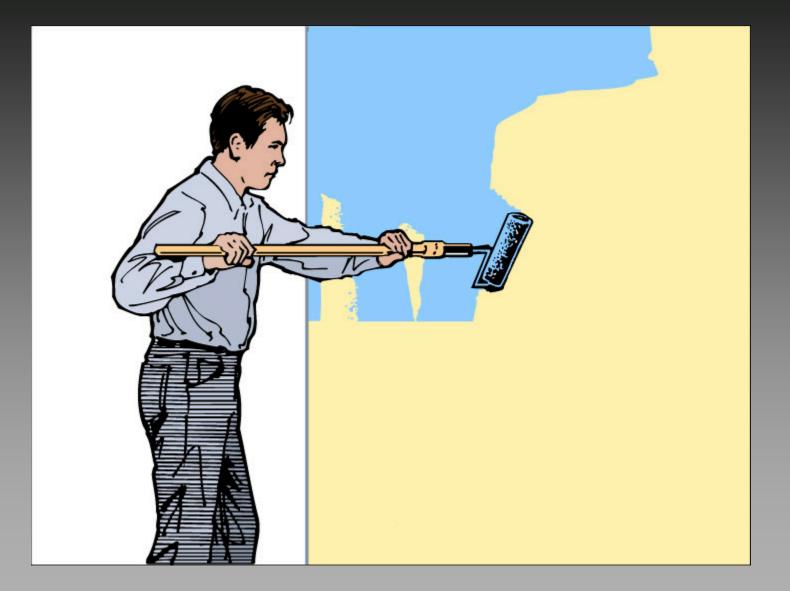
Metering System

Four important features need to be considered:

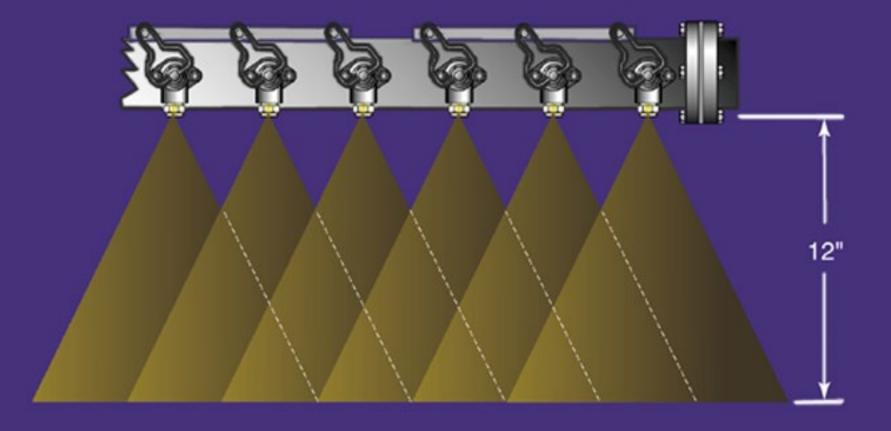
 Desired Application Rate - Gallon/Yard
 Forward Ground Speed - Feet Per Minute
 Asphalt Pump Output - Gallons Per Minute

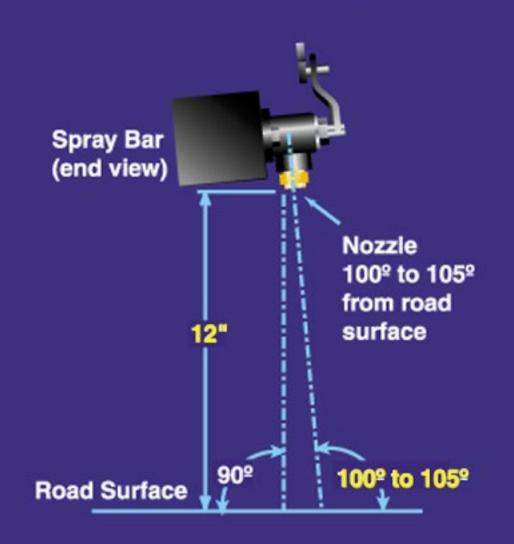

4) Width of Spray - Feet

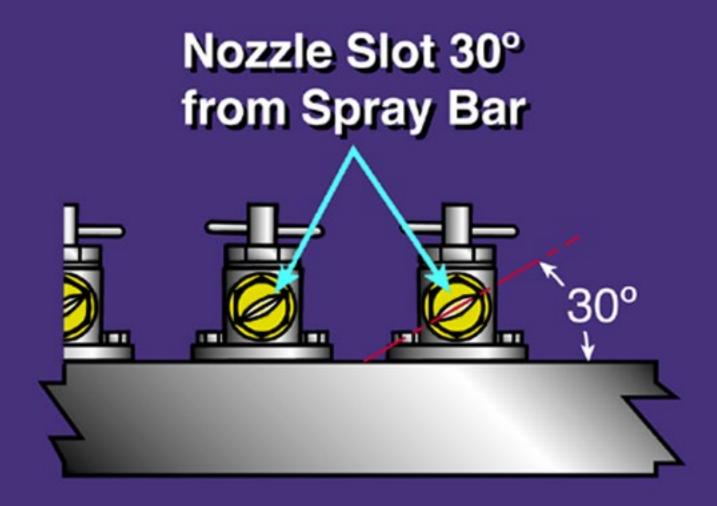

Calculated Eye



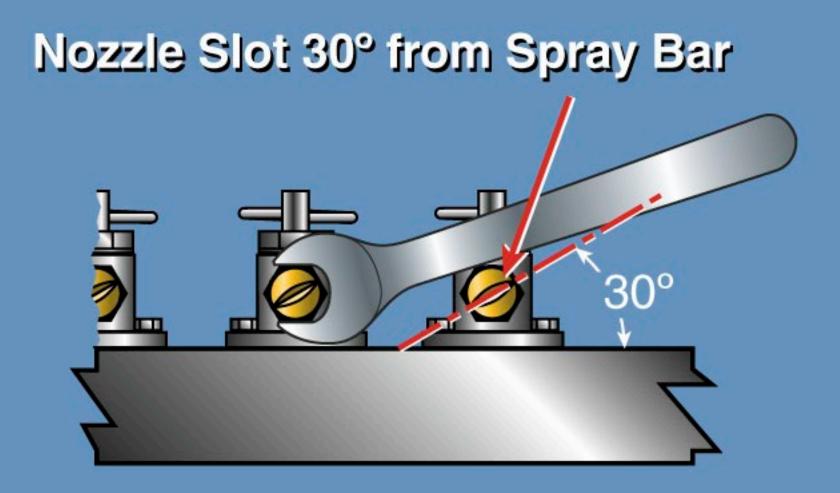
BT1 CONTROLS FRONT PANEL


BT1 CONTROLS REAR PANEL




SPRAY BAR

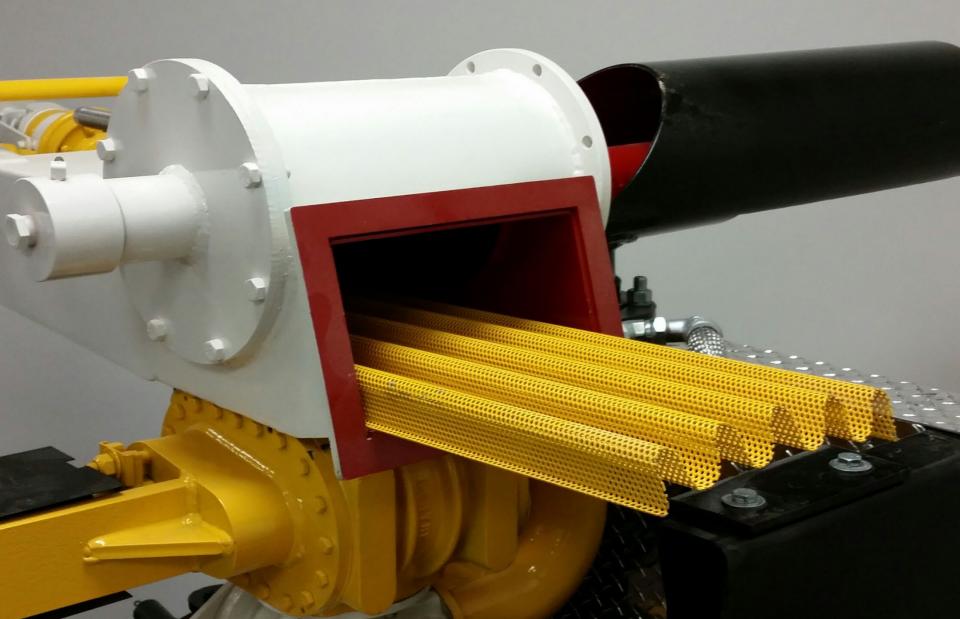
Triple Lap Coverage



Nozzle Height

Spray Bar (bottom view)

Spray Bar (bottom view)


SPRAY BAR NOZZLES

3353788 Etnyre V Slot Tack Nozzle App Rate .05 - .20

Drive Distributor to achieve GPM between Min and Max for Application accuracy

# of Feet	Min GPM	Max GPM	# of Feet	Min GPM	Max GPM
1	3	4.5	13	39	58
2	6	9	14	42	63
3	9	13	15	45	67
4	12	18	16	48	72
5	15	22	17	51	76
6	18	27	18	54	81
7	21	31	19	57	85
8	24	36	20	60	90
9	27	40	21	63	94
10	30	45	22	66	99
11	33	49	23	69	103
12	36	54	24	72	108

Success Is Insured With Teamwork!

Teamwork Is the Difference Between Success and Failure

NOT MY JOB!

SEE YA- ALL LATER

THE BASICS OF ASPHALT BINDERS

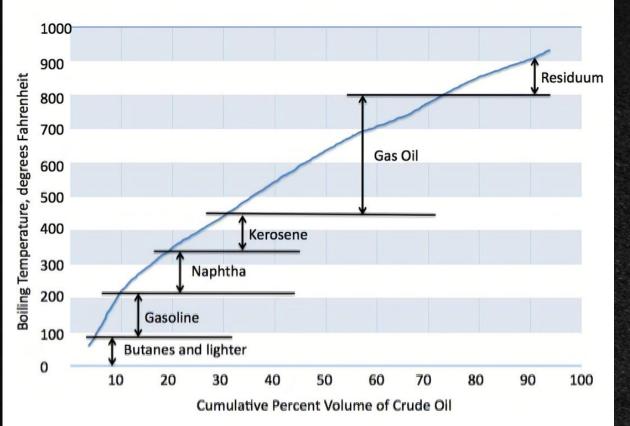
Chase Gabbert – Interstate Testing Services 2024 Black to Basics Training

What is Asphalt?


- A high molecular weight thermoplastic hydrocarbon found in crude petroleum oils
- Asphalt can occur naturally Pitch Lake in Trinidad & Lake Bermudez in Venezuela
- Has been used for thousands of years

 Mesopotamia & Ancient Egypt used
 as an adhesive and waterproofing
- First asphalt road in the U.S. 1870 in New Jersey
- The "best glue in the world"

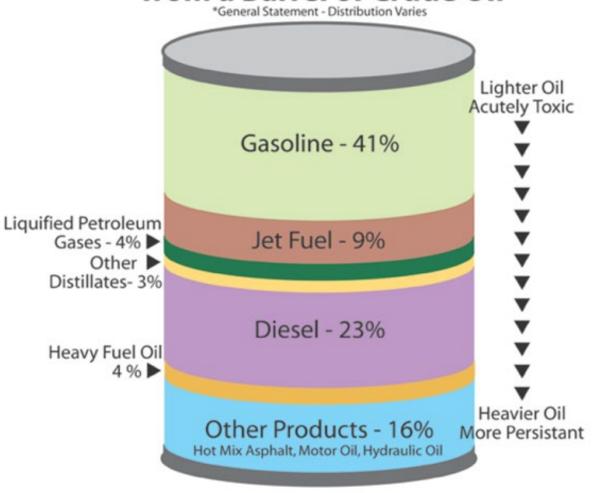
Asphalt From Crude Oil



- Crude Oil was formed millions of years ago by the bacterial decomposition of organic matter, both plant and animal, buried under heavy layers of our earth's sediment.
- Asphalt Cement is NOT tar.

Crude Oil Production - Fractional Distillation

- Propane
- Butane
- Gasoline
- Naphtha
- Kerosene
- Diesel
- Gas Oils
- Asphalt


Crude Oil Breakdown

Asphalt Cement is the "bottom of the barrel."

Crude oils vary, widely. As a generality:

1 Barrel = 42 gallons

SWEET CRUDE vs. SOUR CRUDE

- Sweet crude oil is considered "sweet" if it contains less than 0.5% sulfur. Early
 prospectors would taste oil to determine its quality lower sulfur oil actually tasted
 sweet.
- Sour crude oil contains impurity sulfur levels greater than 0.5%.
- Before sour crude oil can be refined into gasoline, impurities need to be removed, therefore increasing the cost of processing.
- Sweet crude is mainly found in the Appalachian Basin in Eastern North America, Western Texas, the Bakken Formation of North Dakota & Saskatchewan, the European North Sea, North Africa, Australia, and the Far East/Indonesia.
- Sour crude is more common in the Gulf of Mexico, Mexico, South America, and Canada. Crude produced by OPEC Member Nations also tends to be relatively sour, with an average sulfur content of around 2.0%.

LIGHT-vs. HEAVY CRUDE

- Difference between light & heavy oil compares to the liquid density of water
- Light Crude Oil has a lower density lighter than water floats.
- <u>Heavy Crude Oil</u> has a higher density heavier than water sinks.
- Heavier crude oil is harder to refine. Heavy crude oil is also known as "tar sands" because of its high bitumen content.
- Light crude tends to trade at a premium because it is easier to refine and produces more gasoline and diesel fuel.
- Asphalt cement in the U.S. is from a combination of these sources based on the current economics
 - When gas prices are high, refineries want to get more gas out of each barrel of oil
 may use a "Coker" to extract more, leaving less asphalt and lower quality asphalt.

Asphalt Nomenclature

- History of Asphalt Nomenclature
- Todays Performance Graded Asphalts
- Comparison of Performance Graded vs. MSCR

History of AC Nomenclature

- Prior to 1970, asphalts were specified as penetration grades: 5/9, 50/60, 60/70, 85/100, 140/160, and >300 pen
- The penetration of an asphalt is determined by the depth that a free-falling weighted needle penetrates an asphalt sample, at a specified temperature, weight and time. The needle penetration, measured in mm/10, is the penetration of the asphalt. More commonly this is simply referred to as the "pen."

History of AC Nomenclature

- Beginning in 1970, asphalts were specified as viscosity grades. AC-5, AC-10, AC-20, AC-30 and AC-40
- Testing performed in Absolute Viscometer. Measuring flow of material through a calibrated capillary tube under set temperature and vacuum. What did the 30 in AC-30 mean? Multiply 30x100=3000. This was the middle of the acceptable viscosity range for the AC-30 specification.
- Lower the ending number, the thinner/softer the oil was.

- In the 1990's State DOTs began to specify SHRP (Strategic Highway Research Program) or Performance Grades of Asphalts: PG 58-28, PG 64-22, PG 70-22, PG 76-22, etc.
- Thought process of SHRP Performance Grades were created at the same time as Super Pave HMA processes. Transitioning the industry toward where we are today.

- PG Binder Criteria:
- Designed to utilize <u>Rheological testing</u>, at <u>different desired climatical temperatures</u>, at <u>different points of binders "life cycle"</u>

 Rheology – "the science of deformation and flow within a material"

- PG Binder types are selected geographically, based off that regions 100-year climate history.
- PG Binder nomenclature:

Max Design Temperature, °C Min. Design Temperature, °C

Ex.) PG58-28, PG64-22

Performance Grades								
Max. Design Temp.	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82	
Min. Design Temp.	-34 -40 -46	-10 -16 -22 -28 -34 -40 -46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34	-10 -16 -22 -28 -34	
Original								
<u>≥</u> 230 °C	Flash Point							
<u>≤</u> 3 Pa-s @ 135 °C	Rotational Viscosity							
<u>></u> 1.00 kPa	DSR G*/sin δ (Dynamic Shear Rheometer)							
	46	52	58	64	70	76	82	
(Rolling Thin Film Oven) RTFO, Mass Change < 1.00%								
> 2.20 kPa	DSR G*/sin δ (Dynamic Shear Rheometer)							
<u>> 2.20 M d</u>	46	52	58	64	70	76	82	
(Pressure Aging Vessei) PAV								
20 hours, 2.10 MPa	90	90	100	100	100(110)	100(110)	100(110)	
- 5000 kDa	DSR G*sin δ (Dynamic Shear Rheometer) Intermediate Temp. = [(Max. + Min.)/2] + 4							
≤ 5000 kPa	10 7 4	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 16	34 31 28 25 22 19	37 34 31 28 25	40 37 34 31 28	
S <u>≤</u> 300 MPa	BBR S (creep stiffness) & m-value (Bending Beam Rheometer)							
m <u>></u> 0.300	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24	
If BBR m-value > 0.300 and creep stiffness is between 300 and 600, the Direct Tension failure strain requirement can be used in lieu of the creep stiffness requirement.								
C > 1.00%	DTT (Direct Tension Tester)							
ε _f ≥ 1.00%	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24	

Performance Grades

							For the second	
Max. Design Temp.	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82	
Min. Design Temp.	-34 -40 -46	-10 -16 -22 -28 -34 -40 -46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34	-10 -16 -22 -28 -34	
Original								
<u>≥</u> 230 °C	Flash Point							
<u>≤</u> 3 Pa-s @ 135 °C	Rotational Viscosity							
< 1.00 kPa	DSR G*/sin δ (Dynamic Shear Rheometer)							
2 1.00 KFa	46	52	58	64	70	76	82	
(Rolling Thin Film Oven) RTFO, Mass Change < 1.00%								
> 2 20 kPa	DSR G*/sin δ (Dynamic Shear Rheometer)							
2	46	52	58	64	70	76	82	
(Pressure Aging Vessel) PAV								
20 hours, 2.10 MPa	90	90	100	100	100(110)	100(110)	100(110)	
< 5000 kPa	DSR G*sin δ (Dynamic Shear Rheometer) Intermediate Temp. = [(Max. + Min.)/2] + 4							
<u>20000 N a</u>	10 7 4	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 16	34 31 28 25 22 19	37 34 31 28 25	40 37 34 31 28	
S <u>≤</u> 300 MPa	BBR S (creep stiffness) & m-value (Bending Beam Rheometer)							
m ≥ 0.300	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24	
If BBR m-value > 0.300 and creep stiffness is between 300 and 600, the Direct Tension failure strain requirement can be used in lieu of the creep stiffness requirement.								
0 1 0001	DTT (Direct Tension Tester)							
$\varepsilon_1 \ge 1.00\%$	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24	
					- China and China			
	Max. Design Temp. Min. Design Temp. Original ≥230 °C \leq 3 Pa-s @ 135 °C \geq 1.00 kPa (Rolling Thi \geq 2.20 kPa (Pressure A 20 hours, 2.10 MPa \leq 5000 kPa S ≤ 300 MPa m ≥ 0.300	Max. Design Temp.PG 46Min. Design Temp. $34 40 46$ Original $34 40 46$ $\geq 230 °C$ Flash $\leq 3 Pa-s @ 135 °C$ Rotation $\geq 1.00 kPa$ DSR 0 $\geq 1.00 kPa$ DSR 0 $\geq 2.20 kPa$ DSR 0 $\geq 2.20 kPa$ DSR 0 $\geq 2.20 kPa$ DSR 0 $\leq 5000 kPa$ DSR 0 $20 hours, 2.10 MPa$ DSR 0 $\leq 5000 kPa$ DSR 0 $10 7 4$ S $\leq 300 MPa$ m ≥ 0.300 If BBR m-value $\geq 0.300 - 36$ If BBR m-value $\geq 0.300 - 36$ $E_{f} \geq 1.00\%$ DTT (D	Max. Design Temp.PG 46PG 52Min. Design Temp. $\cdot34 \cdot 40 \cdot 46 \cdot 10 \cdot 16 \cdot 22 \cdot 28 \cdot 34 \cdot 40 \cdot 46$ Original $\geq 230 ^{\circ}C$ Flash Point $\leq 3 ^{\circ}Pa \cdot s @ 135 ^{\circ}C$ Rotational Viscosity $\geq 1.00 ^{\circ}Ra$ DSR G*/sin δ (Dynamic S) 46 52OSR G*/sin δ (Dynamic S) 46 52OSR G*/sin δ (Dynamic S) $\geq 2.20 ^{\circ}Ra$ DSR G*/sin δ (Dynamic S) 46 52OSR G*sin δ (Dynamic S) 46 52OSR G*sin δ (Dynamic S) 46 52Onours, 2.10 MPa 90 <t< th=""><th>Max. Design Temp. PG 46 PG 52 PG 58 Min. Design Temp. -34 -40 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 Original $\geq 230 ^{\circ}$C Flash Point Flash Point Flash Point Flash Point $\leq 3 Pa - s @ 135 ^{\circ}$C Rotational Viscosity DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 1.00 kPa DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 Second 70 Max 70 $\geq 1.00 kPa$ DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 Second 70 Max 70 $\geq 2.20 kPa$ DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 Second 70 Second 7</th><th>Max. Design Temp. PG 46 PG 52 PG 58 PG 64 Min. Design Temp. $\cdot34 \cdot 40 \cdot 46 \cdot 10 \cdot 16 \cdot 22 \cdot 28 \cdot 34 \cdot 40 \cdot 46 \cdot 16 \cdot 22 \cdot 28 \cdot 34 \cdot 40 \cdot 10 \cdot 16 \cdot 22 \cdot 28 \cdot 34 \cdot 40$ Original $\geq 230 \circ$C Flash Point Rotational Viscosity DSR G*/sin δ (Dynamic Shear Rheometer) $\geq 1.00 \text{ kPa}$ DSR G*/sin δ (Dynamic Shear Rheometer) 46 52 58 64 (Rolling Thin Film Oven) RTFO, Mass Change DSR G*/sin δ (Dynamic Shear Rheometer) 46 52 58 64 (Pressure Aging Vessel) PAV 20 hours, 2.10 MPa 90 90 100 100 100 $\leq 5000 \text{ kPa}$ BBR G*sin δ (Dynamic Shear Rheometer) 10 7 25 21 10 7 25 21 10 100 100 $\leq 5000 \text{ kPa}$ BBR S (creep stiffness) & m-value (Bending Bear m > 0.300) 10 7 25 21 16 13 10 25 22 19 16 13 10 25 22 19 13 12 25 19 10 $\geq 1.00\%$ DTT (Direct Tension Tester) 10 7 25 21 <th< th=""><th>Max. Design Temp. PG 46 PG 52 PG 58 PG 64 PG 70 Min. Design Temp. $34 + 40 + 46 + 10 + 16 + 22 + 28 + 34 + 40 + 16 + 16 + 22 + 28 + 34 + 40 + 10 + 10 + 10 + 10 + 10 + 10 + 1$</th><th>Max. Design Temp. PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 Min. Design Temp. .34 40/-46/.10/-16/-22/-28/-34/-40/46/.16/-22/-28/-34/-40/.10/.10/.10/.10/.10/.10/.10/.10/.10/.1</th></th<></th></t<>	Max. Design Temp. PG 46 PG 52 PG 58 Min. Design Temp. -34 -40 -10 -16 -22 -28 -34 -40 -46 -16 -22 -28 -34 -40 Original $\geq 230 ^{\circ}$ C Flash Point Flash Point Flash Point Flash Point $\leq 3 Pa - s @ 135 ^{\circ}$ C Rotational Viscosity DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 1.00 kPa DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 Second 70 Max 70 $\geq 1.00 kPa$ DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 Second 70 Max 70 $\geq 2.20 kPa$ DSR G*/sin δ (Dynamic Shear Rheometer 46 52 58 Second 70 Second 7	Max. Design Temp. PG 46 PG 52 PG 58 PG 64 Min. Design Temp. $\cdot34 \cdot 40 \cdot 46 \cdot 10 \cdot 16 \cdot 22 \cdot 28 \cdot 34 \cdot 40 \cdot 46 \cdot 16 \cdot 22 \cdot 28 \cdot 34 \cdot 40 \cdot 10 \cdot 16 \cdot 22 \cdot 28 \cdot 34 \cdot 40$ Original $\geq 230 \circ$ C Flash Point Rotational Viscosity DSR G*/sin δ (Dynamic Shear Rheometer) $\geq 1.00 \text{ kPa}$ DSR G*/sin δ (Dynamic Shear Rheometer) 46 52 58 64 (Rolling Thin Film Oven) RTFO, Mass Change DSR G*/sin δ (Dynamic Shear Rheometer) 46 52 58 64 (Pressure Aging Vessel) PAV 20 hours, 2.10 MPa 90 90 100 100 100 $\leq 5000 \text{ kPa}$ BBR G*sin δ (Dynamic Shear Rheometer) 10 7 25 21 10 7 25 21 10 100 100 $\leq 5000 \text{ kPa}$ BBR S (creep stiffness) & m-value (Bending Bear m > 0.300) 10 7 25 21 16 13 10 25 22 19 16 13 10 25 22 19 13 12 25 19 10 $\geq 1.00\%$ DTT (Direct Tension Tester) 10 7 25 21 <th< th=""><th>Max. Design Temp. PG 46 PG 52 PG 58 PG 64 PG 70 Min. Design Temp. $34 + 40 + 46 + 10 + 16 + 22 + 28 + 34 + 40 + 16 + 16 + 22 + 28 + 34 + 40 + 10 + 10 + 10 + 10 + 10 + 10 + 1$</th><th>Max. Design Temp. PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 Min. Design Temp. .34 40/-46/.10/-16/-22/-28/-34/-40/46/.16/-22/-28/-34/-40/.10/.10/.10/.10/.10/.10/.10/.10/.10/.1</th></th<>	Max. Design Temp. PG 46 PG 52 PG 58 PG 64 PG 70 Min. Design Temp. $34 + 40 + 46 + 10 + 16 + 22 + 28 + 34 + 40 + 16 + 16 + 22 + 28 + 34 + 40 + 10 + 10 + 10 + 10 + 10 + 10 + 1$	Max. Design Temp. PG 46 PG 52 PG 58 PG 64 PG 70 PG 76 Min. Design Temp. .34 40/-46/.10/-16/-22/-28/-34/-40/46/.16/-22/-28/-34/-40/.10/.10/.10/.10/.10/.10/.10/.10/.10/.1	

- "Different Points of Binders Life Cycle" How is that possible?
- Dynamic Shear Rheometer (DSR) Minimum value @ test temperature of <u>original</u> <u>binder</u>.
- Rolling Thin Film Oven (RTFO) <u>Simulation of aging experienced in a hot-mix plant</u>. Maximum mass loss specification. Also, a minimum requirement on the DSR after the RTFO to prevent permanent deformation.
- Pressure Aging Vessel (PAV) <u>Simulation of five to seven years of aging on the road</u>.
 DSR maximum specification to prevent fatigue cracking.
- Bending Beam Rheometer (BBR) <u>Simulation of the low temperature specification</u> to ensure that the binder will not thermally crack.

0

- PG stands for "Performance Grade" PG 58-28
 - 58 is 58 degrees Celsius
 - - 28 is negative 28 degrees Celsius
 - PG58-28 is expected to meet performance expectations with pavement temperatures between 58C (136° Fahrenheit) and -28C (-18° Fahrenheit) with light volumes of fast-moving traffic.
 - PG64-22 should perform best at temperatures between 64°C (147°F) and -22°C (-8°F).
 - The higher the second number is, the softer the asphalt.

PG Grades

- Main grades used in this region are
 - PG58-28
 - PG64-22
 - Also referred to as "Neat AC" or "Straight Run"
- Polymer Modified Asphalt Cements
 - PG64-28
 - PG70-22
 - PG76-22
 - PG70-28

Rule of 92: <u>Max Design Temp – Min</u> <u>Design Temp. = \geq 92° Means that binder has been modified.</u>

MSCR Introduced

- Multiple Stress Creep Recovery Test added to existing PG Grade specifications/testing - <u>MODOT ~ 2010.</u>
- MSCR was designed to designate traffic load counts to standard climate grades for a certain region. Also, to do away with Elastic Recovery testing requirements, would be done utilizing DSR now.
- Traffic count is part of the equation
 - S Standard Traffic (Ex: PG64S-22.)
 - H Heavy Traffic (Ex: PG64H-22.)
 - V Very Heavy Traffic (Ex: PG64V-22.)
 - E Extremely Heavy Traffic (Ex: PG64E-22.)

Multiple Stress Creep Recovery (MSCR)

- <u>Standard Designation "S"</u> in most typical situations will be for traffic levels fewer than 10 million Equivalent Single Axle Loads (ESALs) and more than the standard traffic speed (>70 km/h) 64S-22
- <u>High Designation "H"</u> in most situations will be for traffic levels of 10 to 30 million ESALs or slow-moving traffic (20 to 70 km/h) 64H-22
- <u>Very High Designation "V"</u> in most situations will be for traffic levels of greater than 30 million ESALs or standing traffic (<20 km/h) 64V-22
- <u>Extremely High Designation "E"</u> in most situations will be for traffic levels of greater than 30 million ESALs and standing traffic (<20 km/h) such as toll plazas or port facilities 64E-22

Multiple Stress Creep Recovery (MSCR)

Essentially here's what it means:

- -64S-22 = 64-22
- -64H-22 = 70-22
- -64V-22 = 76-22
- -64E-22 = 82-22

Dependent upon if full MSCR specification is being followed.

MSCR – Why Fix What's Not Broken?

- The MSCR test uses the well-established creep and recovery test concept to evaluate the binder's potential for permanent deformation. Using the Dynamic Shear Rheometer (DSR), the same piece of equipment used today in the existing PG specification, a one-second creep load is applied to the asphalt binder sample. After the 1-second load is removed, the sample is allowed to recover for 9 seconds.
- The test is started with the application of a low stress for 10 creep/recovery cycles then the stress in increased and repeated for an additional 10 cycles.
- In the MSCR test, higher levels of stress and strain are applied to the binder, better representing what occurs in an actual pavement. By using the higher levels of stress and strain in the MSCR test, the response of the asphalt binder captures not only the stiffening effects of the polymer, but also the delayed elastic effects (where the binder behaves like a rubber band).

MSCR – Why Fix What's Not Broken?

- Speed of testing much faster now
- Better predictor of rutting
- Modifier neutral- Better indicator of quality of modification
- Same equipment
- Tested at climate conditions

MODOT – Current Practices

How does this presentation apply to current MODOT specifications.

MODOT – As Is Today

State: Missouri	Materials: Re: Section 1015 – Bituminous Material
Date Last Reviewed: 9/1/22	Web Address: www.modot.org
Materials Engineer: David Ahlvers	Contact Info: david.ahlvers@modot.mo.gov

Asphalt Binder					
	Highlights	MODOT continues to specify M 320 graded binders but allows the substitution of M 332 (MSCR) graded binders as follows: PG 64V-22 in lieu of PG 76-22; PG 64H-22 in lieu of PG 70-22; PG 64S-22 in lieu of PG 64-22. There are no elastic recovery requirements for M 332 graded binders.			
Section 1015	PMA Notes	See elastic recovery below for M320 graded binders. Ground tire rubber (GTR) with 4.5% transpolyoctenamer rubber (TOR) may be used for modification.			
	Exclusions and Limits	None stated.			

MODOT Binder Grades + HMA Recycle

- During HMA Design recycled materials such as RAP (Recycled Asphalt Pavement) and RAS (Recycled Asphalt Shingles) are incorporated back into the mixture to supplement some of the virgin aggregate and virgin oil that is needed to design that mixture.
- Cheaper prices of the recycled materials = cheaper prices of the finished mixture.
- This leads to MODOT allowing <u>Extracted Binder Gradings</u> of the HMA Mixture.

MODOT Binder Grades + HMA Recycle

- With MODOT virtually allowing unlimited amounts of Recycle to be allowed. Binder replacement charts (MODOT Sec. 401) have been put into place in specification.
- Chemical Extraction and Grading has become a major part of our specifications.

	Percent Effective Virgin Binder Replacement					
Binder	RAP RAS		RAP and RAS combination			
Contract Grade Virgin Binder shall be used	0 - 20	0 -10	$RAP + (2*RAS) \le 20$			
Virgin Binder shall be Softened One Grade ^a	21 - 40	11 - 20	$20 < RAP + (2*RAS) \le 40$			
Blend Chart ^b	0 - 100	N/A	N/A			
Extraction and Grading of Binder from final Mixture ^c	0 - 100					

Chemical Extraction and PG Grading

- The HMA Mixture is designed and constructed during the laboratory design process. The final mixture of that HMA is "extracted" to reclaim all asphalt out of the mixture.
- Including virgin asphalt, and any asphalt incorporated by the RAP or RAS.

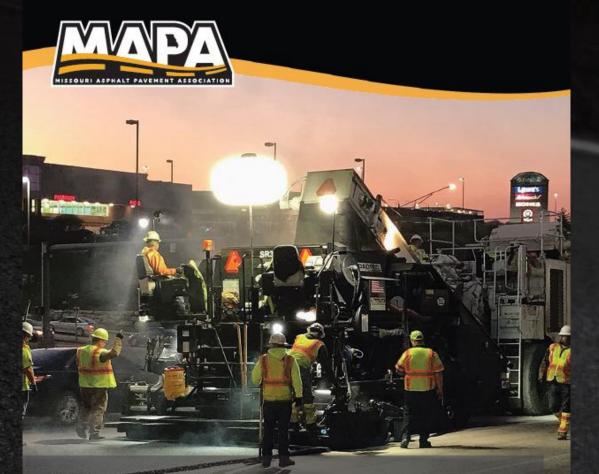
- Chemical Extraction uses solvents to strip the asphalt from the HMA mixture.
- Utilizing a series of High-Speed Centrifuges, and distillation processes. We are able to reclaim all asphalt from the HMA. Being able to successfully test it for SHRP (PG) Specifications.

Chemical Extraction and PG Grading

Chemical Extraction and PG Grading

- Recycled materials are heavily oxidized and generally very stiff.
- Blending these materials into HMA, requires us to use <u>softer PG</u> <u>Grades</u>. To essentially "meet in the middle" at the desired Contract Grade, set by MODOT.

EX.) 40% RAP (PG94-10) + 80% PG46-34 = ?????


Chase Gabbert Bituminous Technical Director

10440 Liberty Ave. St. Louis, MO 63132 Cell: 314-220-7417 Office: 314-994-0641 Interstatetesting.com

MAPA Spring Training – Benefits of Asphalt Design & Construction

Asphalt Pavement Design & Construction Guide

A publication for owners, architects and engineers who design and construct asphalt pavements and parking lots.

Contents

- Bid Development
- Designing Asphalt Pavements
- Mix Types
- Project Cost
- Sample Bidding Documents and Specification

Why Is the Bid Package Important?

Desired Outcome

Best Price

Lowered Risk

5 Key Components

Well Defined Scope of Work

Current Specifications

Accurate Plans

Established Budget

Itemized Proposal

Well Defined Scope of Work

• Defines Exact Product to Built

The Scope of Work includes an asphalt surface treatment.

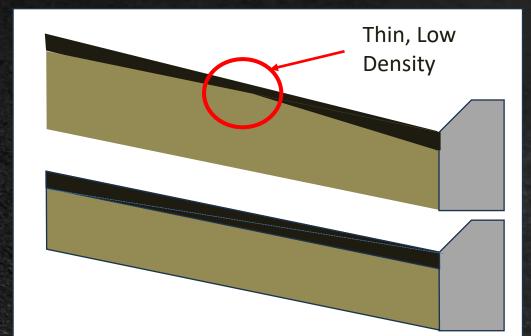
VS

The Scope of Work includes cold milling 64,234 S.Y. of asphalt pavement and placing 10,280 tons of BP-2 at a compacted depth of 2 inches on Main Street.

- Well Defined = Increased Competition
- Increased Competition = Best Price

Specifications and Plans

- Current Specifications
 - 1990 vs 2004 vs 2024 Specifications
- Local Specifications (MoDOT Recommended)
 - Is Material Specified Locally Available?
- Accurate Plans
 - Match Site Conditions
 - Clearly Define Desired Work
 - 2 inches asphalt mix vs 2 inches of compacted BP-1


Itemized Proposal

- Get What You Want
- Estimate Project Cost
 - Work With Local Contractors
- Build What You Can Afford
- Itemized Proposal
 - Lower Risk = Best Price
 - Everyone Bidding the Same Deliverable
 - Easier to Administer Over and Underrun Items

Description	UM	Units	Price	Total
Mobilization/Demobilization	LS			\$0.00
Maintenance Of Traffic	LS			\$0.00
Milling - Mainline	SY			\$0.00
Milling - Approaches	SY			\$0.00
Tack	GAL			\$0.00
BP-1	TON			\$0.00

Designing Asphalt Pavements

- New Construction
 - Knowledgeable Pavement Engineer
 - Pavement Design Software such as PaveExpress[®]
- Pavement Evaluation (Overlay)
 - Geometry profile, crown, cross-slope, drainage
 - Surface Condition PASER Manual
 - Tie-ins and Terminal Points (milled butt joint)
 - Spot Patching
 - Utilities

Designing Asphalt Pavements – cont'd.

Job Special Provision

- Methods and Materials Not Covered in the Specifications
- Caution for Single Source and Proprietary Materials and Methods
- Tack Coat
 - Key to Longevity of the Overlay (or between lifts)
 - Application of Diluted Tack Should be Increased Accordingly.

Surface Type	Target Rate Undiluted (gal/yd²)	Target Rate 20% Diluted (gal/yd²)		
New Asphalt	0.05	0.06		
Existing or Concrete	0.08	0.10		
Cold Milled	0.10	0.13		

Tack Coat Application Rates

Mix Selection

Corridor Designation		Traffic	La	Layer Type		Recommended Mix		Asphalt Binder	
Maintenance			Surf	face/Wedge	S	SL		PG 64-22	
Residential				Surface		P-2	PG 64-	PG 64-22	
			Bir	nder/Base	BB		PG 64-22		
	<600 Trucks Daily			Surface	BP-1		PG 64-22		
Collector			Bir	Binder/Base		BB		PG 64-22	
				Surface		SP125F		PG 64-22	
>600 Trucks Daily		Bir	Binder/Base		SP190F/SP250F		PG 64-22		
Artorial				Surface		SP125C		PG 64-22	
Arterial			Bir	Binder/Base		SP190F/SP250F		PG 64-22	
Minimum Lift Thickness - Inches									
SL B	P-2	BP-1	Bit. Base	SP095	SP125	SP190	SP250		
1.0	1.5	1.75	3.0	1.5	2	2.25	3.0		

Project Cost

- Asphalt Price Index
- Payment Guidelines
 - Tack and Prime Coat by Gallon
 - Asphalt Mixture by Ton (Full Depth S.Y.)
 - Patching Separate
- Value Engineering

Estimate Factors Ton/yd ³					
BP-2	1.934				
BP-1	1.948				
Bit. Base	1.943				
SP095	1.913				
SP125	1.927				
SP190	1.940				
SP250	1.946				

Based on statewide averages; local estimates can be achieved by using the average G_{mm} of local mixtures: $G_{mm} * 0.783$

Bid Package Components

× =

Invitation to Bid Bidder Instructions Contract Execution

||| |

> Bid Documents

> > 12

General Conditions

Best Practices

- Advertise through On-Line Plans Rooms
 - E-Plan
 - Dodge
 - Etc.
- Utilize Contractors that are Members of Trade Associations
- Seek Contractor Qualifications

Invitation to Bid

- Defines Project
 - Letting Date, Time and Location
 - Plan Availability
 - Description of Work
 - Pre-Bid Meeting (optional)
 - Project Questions

INVITATION FOR BIDS

FOR

ASPHALT ROTOMILL AND OVERLAY

The City of Webster Groves is accepting sealed bids for asphalt rotomill and overlay on Project 19PW09, until 10:00 A.M., Wednesday, March 4, 2020. Bid packages are available at planroom.drexeltech.com. A five (5) percent security in the form specified must accompany each bid. A non mandatory pre-bid meeting will be held at 11:00 A.M., Wednesday, February 26, 2020 at City Hall in the Council Chambers. The City reserves the right to reject any or all bids and waive any technicalities.

Description of Work

The Scope of Work includes improvements for cold rotomilling 64,766 S.Y. of asphalt pavement and placing a 2" asphalt overlay pavement, rotomilling 7,641 S.Y. and placing a 2" asphalt overlay on a parking lot in 2 phases, utility adjustments, traffic control, and other incidental items necessary, as shown in the construction drawings and specifications.

ADVERTISEMENT FOR BIDS

NOTICE TO BIDDERS

SEALED PROPOSALS for the Cole County Asphalt Overlay Program, consisting of:

2020 ASPHALT OVERLAY PROGRAM Project No. 2020-501-1

WILL be received and opened publicly at the office of Cole County Commission, Courthouse Annex, Room 200, 311 East High Street, Jefferson City, Missouri 65101 at

9:00 A.M. on Friday, May 1, 2020

Any and all bids received after the time specified above will be returned unopened.

The proposed work includes cold milling existing asphalt and concrete pavements and placement of new asphalt throughout the County.

Plans and specifications may be viewed and downloaded online in the bids section at <u>www.colecounty.org</u>. A hard copy of the plans and specifications will not be provided. All contractors wishing to bid on this project shall submit the plan holder contact information form found in the specifications to <u>ccpwprojects@colecounty.org</u> prior to the bid opening.

NOTICE TO BIDDERS

Sealed proposals will be received at the office of the Cole County Commission, Courthouse Annex, Room 200, 311 East High Street, Jefferson City, Missouri, 65101, until 9:00 A.M., **Friday, May 1, 2020**. The bids will be opened and read aloud at the Cole County Commission, Courthouse Annex, Room 200, 311 East High Street at 9:00 A.M. on that same day.

The proposed work includes cold milling existing asphalt and concrete pavements and placement of new asphalt throughout the County for:

2020 ASPHALT OVERLAY PROGRAM PROJECT NO. 2020-501-1

 Pre-Bid Meeting – Optional

 Day / Date:
 Thursday, May 21, 2020

 Time:
 11:00 A.M.

 Location / Address:
 Tele-Conference

 Dial-In Number: 701-801-1211

 Access Code: 758-401-651

 The meeting will be conducted by teleconference only. Interested bidders have the option to submit questions in advance and/or to attend the teleconferenced pre-bid meeting.

Bidder Instructions

- Definitions
- Qualification of Bidders
- Bid Security
- Preparation of Bids
- Addendum
- Submission of Bids
- Bid Modification or Withdrawal
- Consideration of Bids

DEFINITIONS

1.1 Bidding Documents include the Invitation to Bid, Instructions to Bidders, the Bid Form and the proposed Contract Documents including any Addenda issued prior to receipt of bids. The Contract Documents proposed for the Work consist of the City Contractor Agreement, the General Conditions of City-Contractor Agreement, State Wage Determination, Prevailing Wage Law Compliance Affidavit, Non-Collusion Affidavit, Immigration and OSHA Affidavit, Non-Segregation Affidavit, Performance Payment Bond, the Drawings, the Specifications, the Construction Schedule, all Addenda, and all Modifications.

1.2 All definitions set forth in the General Conditions of City-Contractor Agreement or in other Contract Documents are applicable to the Bidding Documents.

1.3 Addenda are written or graphic instruments issued prior to the execution of the City-Contractor Agreement which modify or interpret the Bidding Documents by additions, deletions, clarifications or corrections.

1.4 A Bid is a complete and properly signed proposal to do the Work or a designated portion thereof for the sums stipulated therein, submitted in accordance with the Bidding Documents.

1.5 The Base Bid is the sum stated in the Bid for which the Bidder offers to perform the Work described in the Bidding Documents as the base to which work may be added or from which work may be deleted for sums stated in Alternate Bids.

1.6 An Alternate Bid is an amount stated in the Bid to be considered in addition to the Base Bid if the corresponding alternate to the Work, as described in the Bidding Documents, is accepted.

1.7 A Unit Price is an amount stated in the Bid as a price per unit of measurement for materials or services as described in the Bidding Documents or in the proposed Contract Documents.

1.8 A Bidder is a person or entity who submits a Bid.

1.9 A Sub-bidder is a person or entity who submits a bid to a Bidder for materials or labor for a portion of the Work.

1.10 Standard Specifications are defined as the 1997 St. Louis County Standard Specifications for Highway Construction current edition.

2-4 Qualifications of Bidders

The County of COLE may make such investigations as deemed necessary to determine the ability of the bidder to perform the work and the bidder shall furnish to the County of COLE all such information and data for this purpose as the County of COLE may request. The County of COLE reserves the right to reject any bid if the evidence submitted by the bidder or investigation of such bidder fails to satisfy the County of COLE that such bidder is properly qualified to carry out the obligations of the Contract and to complete the work contemplated therein.

2-6 Bid Security

Each bid must be accompanied by a certified check or bid bond made payable to the County of COLE for five percent (5%) of the amount of the bid. Bid securities will be returned after award of contract except to the successful bidder.

Should the successful bidder or bidders fail or refuse to execute the bond and the contract required within ten (10) days after he has received Notice of Acceptance of his bid, he shall forfeit to the County of COLE as liquidated damages for such failure or refusal, the security deposited with his bid.

2-7 Preparation of Bids

Bid must be made upon prescribed forms attached at the back of these Specifications. Only sealed bids will be considered, all bids otherwise submitted will be rejected as irregular.

All blank spaces in the bid must be filled in and no change shall be made in the phraseology of the bid or addition to the items mentioned therein. Any conditions, limitation, or provisions attached to bids will render them informal and may be considered cause for their rejection.

4.1

These Contract Documents include a complete set of bidding and contract 4.1.1 forms which are for the convenience of bidders. All bids must be submitted on the Bid Forms provided. 4.1.2 All blanks on the bid form shall be filled in by type writer or manually in ink. 4.1.3 Where so indicated by the make-up of the bid form, dollar amount shall be expressed in both words and figures and in case of discrepancy between the two, the amount written in words shall govern. Any interlineation, alteration or erasure must be initialed by the signer of the 4.1.4 Bid. Where two or more Bids for designated portions of the Work have been 4.1.5 requested, the Bidder may, without forfeiture of his bid security, state his refusal to accept award of less than the combination of Bids he so stipulates. The Bidder shall make no additional stipulations on the bid form nor qualify his Bid in any other manner.

FORM AND STYLE OF BIDS

4.1.6 Each copy of the Bid shall include the legal name of the Bidder and a statement that the Bidder is a sole proprietor, a partnership, a corporation, or some other legal entity. Each copy shall be signed by the person or persons legally authorized to bind the Bidder to a contract. A Bid submitted by an agent shall have a current power of attorney attached certifying the agent's authority to bind the Bidder.

3.4 ADDENDA

3.4.1 Addenda will be mailed or delivered to all who are known by the City to have received a complete set of Bidding Documents.

3.4.2 Copies of Addenda will be made available for inspection wherever Bidding Documents are on file for that purpose.

3.4.3 No Addenda will be issued later than four (4) days prior to the date for receipt of Bids, except an Addendum withdrawing the request for Bids or one which includes postponement of the date for receipt of Bids.

3.4.4 Prior to submitting his Bid, each Bidder shall ascertain that he has received all Addenda issued, and he shall acknowledge receipt of all such Addenda in his Bid.

4.3 SUBMISSION OF BIDS

4.3.1 Bidders must complete and submit with their bids the "Certificate of Non-Segregation" and the "Non-Collusion Affidavit" included with the Bid Form, and five (5) percent Bid Bond.

4.3.2 All copies of the Bid, the Bid Bond and any other documents required to be submitted with the Bid shall be enclosed in a sealed envelope. The envelope shall be addressed to Department of Public Works, City of Webster Groves, Missouri 63119 and shall be identified with the Project name, the Bidder's name and address and, if applicable, the designated portion of the Work for which the Bid is submitted. If the Bid is sent by mail, the sealed envelope shall be enclosed in a separate mailing envelope with the notation "SEALED BID ENCLOSED" on the face thereof.

4.3.3 Bids shall be deposited at the designated location prior to the time and date for receipt of Bids indicated in the Invitation to Bid, or any extension thereof made by an Addendum. Bids received after the time and date for receipt of Bids will be returned unopened.

4.3.4 The Bidder shall assume full responsibility for timely delivery at the location designated for receipt of Bids.

4.4 MODIFICATION OR WITHDRAWAL OF BID

4.4.1 A Bid may not be modified, <u>withdrawn</u> or canceled by the Bidder within sixty (60) days following the time and date designated for the receipt of Bids, and each Bidder so agrees in submitting his Bid.

4.4.2 Prior to the time and date designated for receipt of Bids, any Bid submitted may be modified or withdrawn by notice to the party receiving Bids at the place designated for receipt of Bids. Such notice shall be in writing over the signature of the Bidder or by telegram. If by telegram, written confirmation over the signature of the Bidder shall be mailed and postmarked on or before the date and time set for receipt of Bids, and it shall be so worded as not to reveal the amount of the original Bid.

4.4.3 Withdrawn Bids may be resubmitted up to the time designated for the receipt of Bids provided that they are then fully in conformance with these Instructions to Bidders.

4.4.4 The amount of the Bid Bond shall be in an amount sufficient for the Bid as modified or resubmitted.

CONSIDERATION OF BIDS

5.1 OPENING OF BIDS

5.1.1 Unless stated otherwise in the Invitation to Bid, the properly identified Bids received on time will be opened publicly and will be read aloud.

5.2 REJECTION OF BIDS

5.2.1 The City shall have the right to reject any or all Bids, to reject a Bid not accompanied by a Bid Bond or by other data required by the Bidding Documents, to reject a Bid which is in any way incomplete or irregular and to rebid the Work at a later date if all Bids are rejected. Deviations in a unit price which are greater than twenty-five (25) percent of the average unit price for the total present bid of a specific line item shall be the basis for rejection of a bid.

5.3 ACCEPTANCE OF BID (AWARD)

5.3.1 The City may make any investigation of a Bidder as it deems necessary to determine the ability of a Bidder to perform the Work. Bidders shall furnish information regarding their qualifications upon the reasonable request of the City. The City reserves the right to reject any Bid if the evidence submitted by, or other investigation of, the Bidder fails to satisfy the City that the Bidder has the proper qualifications to perform the Work in accordance with the Contract.

5.3.2 It is the intent of the City to award the Contract to the lowest responsible Bidder provided the Bid has been submitted in accordance with the requirements of the Bidding Documents and does not exceed the funds available. However, the City reserves the right to accept the Bid which, in the City's judgment, is in the best interest of and most advantageous to the City. The City shall have the right to waive any informality or irregularity in any Bid or Bids received and to accept the Bid or Bids which, in its judgment, is in the City's own best interests.

Bid Documents

- Itemized Proposal
- Contact Information
- Asphalt Index (Optional)

ASPHALT ROTOMILL AND OVERLAY PROJECT 19PW09

and being familiar with the local conditions affecting the work, hereby proposes to furnish all labor, materials, equipment and services required for the performance and completion of said project in accordance with the said Contract documents for the following itemized bid.

NUMBER T			PLAN	UNIT	TOTAL
	TEM DESCRIPTION	UNIT	QUANTITY	COST	COST
1 R	Rotomilling (nominal 2")	S.Y.	64,766		
2 1	Type "C" Asphaltic Concrete (nominal 2")	Tons	7,228		
3 <mark>R</mark>	Reset and/or Adjust Manhole to Grade	EA	40		
4 T	Traffic Control	L.S.	1		
5 <mark>R</mark>	Rotomilling (nominal 2") Parking Lot	S.Y.	7,641		
6 T	Type "C" Asphaltic Concrete Parking Lot	Tons	853		
	TOTAL BID				

4. Response Form

(Note: This form must be signed. All signatures must be original and not photocopies. In addition, the County uses *Docusign* when making a contract award. When providing a Contact Name and E-Mail Address below, the Contact and E-Mail address provided must be a person who has the legal authority to contractually bind the offeror's/bidder's company in a contract with the County.)

4.1. Company Name:

4.2. Address:
4.3. City/Zip:
4.4. Phone Number:
4.5. Fax Number:
4.6 Email Address:
4.7. Federal Tax ID:

4.10. Optional Asphalt Cement Price Index Provision (Section 2.9.1.3. of bid document) Failure by the bidder to check an option will be interpreted to mean election to not participate in the Asphalt Cement Price Index. Check One:

ACCEPT

___DO NOT ACCEPT

General Conditions

- Contract Specifications
- Notice to Proceed
- Work Schedule
- Contract Time
- Liquidated Damages
- Asphalt Index (Optional)
- Job Special Provisions

TECHNICAL SPECIFICATIONS

The Technical Specifications for the Cole County Asphalt Overlay Program shall consist of the currently effective version of the <u>Missouri Standard Specifications for Highway</u> <u>Construction</u>, Sections 201-1092 except as modified or contradicted herein.

2-23 Notice to Proceed

The contractor's notice to proceed for each road will be as follows. Construction activities shall not commence on the respective roads until these dates:

July 1, 2020

Grand Point Court Sunnybrook Court Scrivner Road Blackburn Lane

July 15, 2020 Highland Wave Aberdeen Wave Balmoral Wave Coventry Wave Dalwhinne Wave Edinburgh Wave

August 1, 2020 Terra Bella Drive Terra Bella Court Kendalwood Court Meeting Street Catalina Drive Cross Key Court Ashley Court Wellington Green

2-24 Work Schedule

To insure that the work will proceed continuously through the succeeding operations to its completion with the least possible interference to traffic and inconvenience to the public, the Contractor shall submit for approval a complete schedule of his proposed construction procedure, stating the sequence in which various operations of work are to be performed. The Contractor may not change the work sequence without the prior approval of the Engineer.

2-27 Contract Time

This contract shall be a completion date contract. The contract shall be completed by no later than September 18, 2020.

2-28 Liquidated Damages

Liquidated damages shall be assessed at the rate of **Seven Hundred Dollars (\$700.00)** per calendar day until the project is complete, should the project not be completed within the specified time period.

2.9.1. Asphalt Cement Price Index

2.9.1.1. If the bidder so chooses, asphaltic pavement and base mixes are eligible for the following price adjustment. This adjustment will apply only to the percentage of virgin asphalt cement actually placed on the job, excluding RAP or RAS, and will be calculated using the following formula: $A = (B \times C) \times (D - E)$

2.9.1.2. Where:

- A = Adjustment
- B = Tons of mix placed
- C = % of virgin asphalt binder as listed in the job mix formula
- D = monthly price for the month prior to mix placement
- E = monthly price for the month prior to bid submission

2.9.1.3. The monthly asphalt prices will be those shown in the Dollar/Ton column of the "Asphalt Price Index" table posted at MoDot.org – Bidding-Road & Bridge Construction Bidding Opportunities – Online Plan Rooms – Asphalt Price Index - on MoDOT's website, also currently located at: http://www.modot.org/eBidLettingPublicWeb/viewStream.do?documentType=general_info&key=658 All prices will be for the entire month regardless of when posted. Separate adjustments will be calculated for each month in which the bidder places eligible material.

JOB SPECIAL PROVISIONS

Cole County, MO 2020 Asphalt Overlay Program Project No. 2020-501-1

JOB SPECIAL PROVISIONS TABLE OF CONTENTS

(Job Special Provisions shall prevail over General Special Provisions whenever in conflict therewith.)

- A. General
- B. Parital Acceptance
- C. Traffic Control During Construction
- D. Tack
- E. Low Tracking or Non-Tracking Tack Coat
- F. Location of Various Roads
- G. Performance Graded Asphalt Binder
- H. Order of Work
- I. Preconstruction Conference
- J. Haul Truck Types Prohibited
- K. Approval of Asphalt Mix Design
- L. Temporary Pavement Marking
- M. Cooperation with County
- N. Verification of Job Mix Formula
- O. Asphalt Cores for Pavement Testing
- P. Reclaimed Asphalt Shingles (RAS)
- Q. Coldmilling Special Requirements
- R. Transverse Joints (Headers)
- S. Paving Requirement around Manhole Lids
- T. Centerline Joint
- U. Asphalt Paver Minimum Requirements

Contract Execution

- Award of Contract
- Performance Bond
- Insurance
- Prevailing Wage (if applicable)
- Anti-Collusion

AWARD OF CONTRACT

7.1 Following receipt to the satisfaction of the City of all information required under Paragraph 6.1 above, the City shall mail to the successful Bidder the Notice of Award of the Contract.

7.2 Within five (5) working days from the date of receipt of the Notice of Award, the successful Bidder shall execute and deliver to the City the Contract Documents, and shall furnish the Bonds required by Paragraph 8.1 below and the Certificates of Insurance required by Subparagraph 10.1.3 of the General Conditions. In the event the successful Bidder fails to execute and deliver the Contract Documents, the Bonds and the Certificates of Insurance as aforesaid, the City may, at its option, consider the Bidder in default and award the Contract to another Bidder, in which case the Bid Bond of the defaulting Bidder shall be forfeited to the City.

2-17 Performance Bond

A Performance Bond in an amount equivalent to one hundred percent (100%) of the Contract price, must be furnished and executed by the successful bidder or bidders, this bond to be in the form contained in this Contract.

The Surety shall be a corporate Surety Company or companies of recognized standing licensed to do business in the State of Missouri and acceptable to the County of COLE.

2-18 Indemnification and Insurance

The Contractor agrees to indemnify and hold harmless the County and the Engineer from all claims and suits for loss of or damage to property, including loss of all judgments recovered therefore, and from all expense in defending said claims, or suits, including court costs, attorney fees, and other expense caused by any act or omission of the Contractor and/or his subcontractors, their respective agents, servants, or employees.

Certificate of Insurance

The Contractor shall be required to provide the County of COLE with a "Certificate of Insurance."

2-21 Prevailing Wage Law

The principal contractor and all subcontractors shall pay not less than the prevailing wage hourly rate for each craft or type of workman required to execute this contract as determined by the Department of Labor and Industrial Relations of Missouri, pursuant to Sections 290.210 through 290.340, RSMo. <u>1986</u> (See Determination herewith included in Section 5.)

ANTI-COLLUSION STATEMENT

STATE	OF	MISSOURI
DIAIL	OI.	MIDDOURI

COUNTY OF _____

_____, being first duly sworn, deposes and

(Name of

says that he is

(Title of Person Signing)

Bidder)

that all statements made and facts set out in the bid for the above project are true and correct; and the bidder (person, firm, association, or corporation making said bid) has not, either directly or indirectly, entered into any agreement, participated in any collusion, or otherwise taken any action in restraint of free competitive bidding in connection with said bid or any contract which may result from its acceptance.

Affiant further certifies that bidder is not financially interested in, or financially affiliated with, any other bidder for the above project

Ву			
Ву			
Ву			
Sworn to before me this	day of		, 20
		ry Public	
My Commission Expires			

Specifications

- General Provisions (If required by scope or funding)
 - Environmental
 - Training Provision
- Job Special Provisions
 - Specialized Products
 - Utility Adjustment or Cooperation
 - Order of Work
 - Etc.
- Technical Specifications

Technical Specification

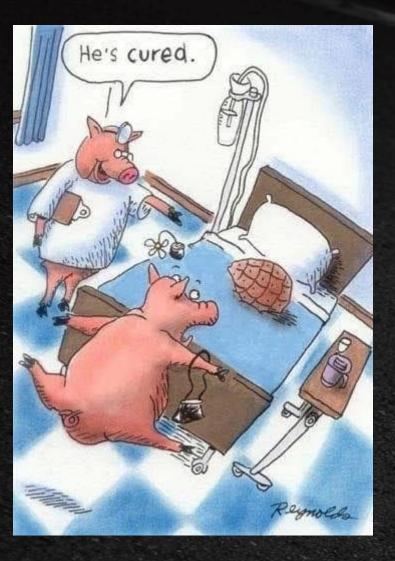
- Description
- Materials
- Construction Requirements
- Pavement Repairs
- Testing Requirements
 - Asphalt Content
 - Density
- Method of Measurement
- Payment

5 Key Components

Well Defined Scope of Work **Current Specifications**

_	
•	•
1	2.17

Established Budget



Itemized Proposal

QUESTIONS?

dalewilliams@moasphalt.org

573-635-6071

